Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome Res Rep ; 3(2): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841412

RESUMEN

Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.

2.
Cell Host Microbe ; 32(5): 768-778.e9, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38653241

RESUMEN

Microbiomes feature complex interactions between diverse bacteria and bacteriophages. Synthetic microbiomes offer a powerful way to study these interactions; however, a major challenge is obtaining a representative bacteriophage population during the bacterial isolation process. We demonstrate that colony isolation reliably excludes virulent viruses from sample sources with low virion-to-bacteria ratios such as feces, creating "virulent virus-free" controls. When the virulent dsDNA virome is reintroduced to a 73-strain synthetic gut microbiome in a bioreactor model of the human colon, virulent viruses target susceptible strains without significantly altering community structure or metabolism. In addition, we detected signals of prophage induction that associate with virulent predation. Overall, our findings indicate that dilution-based isolation methods generate synthetic gut microbiomes that are heavily depleted, if not devoid, of virulent viruses and that such viruses, if reintroduced, have a targeted effect on community assembly, metabolism, and prophage replication.


Asunto(s)
Bacterias , Bacteriófagos , Heces , Microbioma Gastrointestinal , Bacteriófagos/genética , Bacteriófagos/fisiología , Humanos , Heces/microbiología , Heces/virología , Bacterias/virología , Bacterias/genética , Profagos/genética , Profagos/fisiología , Viroma , Reactores Biológicos/microbiología , Reactores Biológicos/virología , Colon/microbiología , Colon/virología , Microbiota , Virulencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-38652096

RESUMEN

A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Enterobacteriaceae , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Animales , Abejas/microbiología , ARN Ribosómico 16S/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genoma Bacteriano
4.
Trends Mol Med ; 30(3): 209-222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195358

RESUMEN

Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Trasplante de Microbiota Fecal , Infecciones por Clostridium/terapia , Resultado del Tratamiento
6.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055943

RESUMEN

Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.


Asunto(s)
Apicultura , Abejas , Fermentación , Microbioma Gastrointestinal , Probióticos , Animales , Antibacterianos/inmunología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Apicultura/métodos , Abejas/efectos de los fármacos , Abejas/inmunología , Abejas/microbiología , Fermentación/inmunología , Microbioma Gastrointestinal/inmunología , Probióticos/farmacología , Probióticos/uso terapéutico
7.
Microbiome ; 11(1): 263, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007438

RESUMEN

BACKGROUND: Inquiry of microbiota involvement in kidney stone disease (KSD) has largely focussed on potential oxalate handling abilities by gut bacteria and the increased association with antibiotic exposure. By systematically comparing the gut, urinary, and oral microbiota of 83 stone formers (SF) and 30 healthy controls (HC), we provide a unified assessment of the bacterial contribution to KSD. RESULTS: Amplicon and shotgun metagenomic sequencing approaches were consistent in identifying multi-site microbiota disturbances in SF relative to HC. Biomarker taxa, reduced taxonomic and functional diversity, functional replacement of core bioenergetic pathways with virulence-associated gene markers, and community network collapse defined SF, but differences between cohorts did not extend to oxalate metabolism. CONCLUSIONS: We conclude that multi-site microbiota alteration is a hallmark of SF, and KSD treatment should consider microbial functional restoration and the avoidance of aberrant modulators such as poor diet and antibiotics where applicable to prevent stone recurrence. Video Abstract.


Asunto(s)
Cálculos Renales , Microbiota , Humanos , Microbiota/genética , Oxalatos/metabolismo , Metagenoma , Bacterias
8.
Nat Med ; 29(8): 2121-2132, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414899

RESUMEN

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Asunto(s)
Trasplante de Microbiota Fecal , Melanoma , Animales , Ratones , Trasplante de Microbiota Fecal/métodos , Inhibidores de Puntos de Control Inmunológico , Heces/microbiología , Melanoma/terapia , Inmunoterapia , Resultado del Tratamiento
9.
ISME J ; 17(9): 1382-1395, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37311937

RESUMEN

Managed honey bee (Apis mellifera) populations play a crucial role in supporting pollination of food crops but are facing unsustainable colony losses, largely due to rampant disease spread within agricultural environments. While mounting evidence suggests that select lactobacilli strains (some being natural symbionts of honey bees) can protect against multiple infections, there has been limited validation at the field-level and few methods exist for applying viable microorganisms to the hive. Here, we compare how two different delivery systems-standard pollen patty infusion and a novel spray-based formulation-affect supplementation of a three-strain lactobacilli consortium (LX3). Hives in a pathogen-dense region of California are supplemented for 4 weeks and then monitored over a 20-week period for health outcomes. Results show both delivery methods facilitate viable uptake of LX3 in adult bees, although the strains do not colonize long-term. Despite this, LX3 treatments induce transcriptional immune responses leading to sustained decreases in many opportunistic bacterial and fungal pathogens, as well as selective enrichment of core symbionts including Bombilactobacillus, Bifidobacterium, Lactobacillus, and Bartonella spp. These changes are ultimately associated with greater brood production and colony growth relative to vehicle controls, and with no apparent trade-offs in ectoparasitic Varroa mite burdens. Furthermore, spray-LX3 exerts potent activities against Ascosphaera apis (a deadly brood pathogen) likely stemming from in-hive dispersal differences, whereas patty-LX3 promotes synergistic brood development via unique nutritional benefits. These findings provide a foundational basis for spray-based probiotic application in apiculture and collectively highlight the importance of considering delivery method in disease management strategies.


Asunto(s)
Probióticos , Varroidae , Abejas , Animales , Suplementos Dietéticos , Bacterias/genética , Lactobacillus , Apicultura
10.
Trends Microbiol ; 31(5): 521-534, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36526535

RESUMEN

Paenibacillus larvae is a spore-forming bacterial entomopathogen and causal agent of the important honey bee larval disease, American foulbrood (AFB). Active infections by vegetative P. larvae are often deadly, highly transmissible, and incurable for colonies but, when dormant, the spore form of this pathogen can persist asymptomatically for years. Despite intensive investigation over the past century, this process has remained enigmatic. Here, we provide an up-to-date synthesis on the often overlooked microbiota factors involved in the spore-to-vegetative growth transition (corresponding with the onset of AFB disease symptoms) and offer a novel outlook on AFB pathogenesis by focusing on the 'collaborative' and 'competitive' interactions between P. larvae and other honey bee-adapted microorganisms. Furthermore, we discuss the health trade-offs associated with chronic antibiotic exposure and propose new avenues for the sustainable control of AFB via probiotic and microbiota management strategies.


Asunto(s)
Paenibacillus larvae , Probióticos , Abejas , Animales , Estados Unidos , Larva/microbiología , Antibacterianos , Esporas Bacterianas
11.
Microbiome Res Rep ; 1(1): 6, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38089067

RESUMEN

There is emerging concern regarding the unintentional and often unrecognized antimicrobial properties of "non-antimicrobial" pesticides. This includes insecticides, herbicides, and fungicides commonly used in agriculture that are known to produce broad ranging, off-target effects on beneficial wildlife, even at seemingly non-toxic low dose exposures. Notably, these obscure adverse interactions may be related to host-associated microbiome damage occurring from antimicrobial effects, rather than the presumed toxic effects of pesticides on host tissue. Here, we critically review the literature on this topic as it pertains to the rhizosphere microbiome of crop plants and gut microbiome of pollinator insects (namely managed populations of the western honey bee, Apis mellifera), since both are frequent recipients of chronic pesticide exposure. Clear linkages between pesticide mode of action and host-specific microbiome functionalities are identified in relation to potential antimicrobial risks. For example, inherent differences in nitrogen metabolism of plant- and insect-associated microbiomes may dictate whether neonicotinoid-based insecticides ultimately exert antimicrobial activities or not. Several other context-dependent scenarios are discussed. In addition to direct effects (e.g., microbicidal action of the parent compound or breakdown metabolites), pesticides may indirectly alter the trajectory of host-microbiome coevolution in honey bees via modulation of social behaviours and the insect gut-brain axis - conceivably with consequences on plant-pollinator symbiosis as well. In summary, current evidence suggests: (1) immediate action is needed by regulatory authorities in amending safety assessments for "non-antimicrobial" pesticides; and (2) that the development of host-free microbiome model systems could be useful for rapidly screening pesticides against functionally distinct microbial catalogues of interest.

12.
Cell Rep ; 37(10): 110087, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879270

RESUMEN

The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.


Asunto(s)
Bacterias/metabolismo , Metabolismo Energético , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Enfermedades Metabólicas/microbiología , Animales , Bacterias/crecimiento & desarrollo , Enfermedad Crónica , Disbiosis , Interacciones Huésped-Patógeno , Humanos , Enfermedades Metabólicas/metabolismo , Simbiosis
13.
mSystems ; 6(2)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824193

RESUMEN

High-throughput 16S rRNA gene sequencing technologies have robust potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated microbial communities and their impact on hive health and disease. Despite recent computation algorithms now permitting exact inferencing of high-resolution exact amplicon sequence variants (ASVs), the taxonomic classification of these ASVs remains a challenge due to inadequate reference databases. To address this, we assemble a comprehensive data set of all publicly available bee-associated 16S rRNA gene sequences, systematically annotate poorly resolved identities via inclusion of 618 placeholder labels for uncultivated microbial dark matter, and correct for phylogenetic inconsistencies using a complementary set of distance-based and maximum likelihood correction strategies. To benchmark the resultant database (BEExact), we compare performance against all existing reference databases in silico using a variety of classifier algorithms to produce probabilistic confidence scores. We also validate realistic classification rates on an independent set of ∼234 million short-read sequences derived from 32 studies encompassing 50 different bee types (36 eusocial and 14 solitary). Species-level classification rates on short-read ASVs range from 80 to 90% using BEExact (with ∼20% due to "bxid" placeholder names), whereas only ∼30% at best can be resolved with current universal databases. A series of data-driven recommendations are developed for future studies. We conclude that BEExact (https://github.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a broad range of bee species-two factors of key importance to reproducibility and meaningful knowledge exchange within the scientific community that together, can enhance the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing endeavors.IMPORTANCE The failure of current universal taxonomic databases to support the rapidly expanding field of bee microbiota research has led to many investigators relying on "in-house" reference sets or manual classification of sequence reads (usually based on BLAST searches), often with vague identity thresholds and subjective taxonomy choices. This time-consuming, error- and bias-prone process lacks standardization, cripples the potential for comparative cross-study analysis, and in many cases is likely to incorrectly sway study conclusions. BEExact is structured on and leverages several complementary bioinformatic techniques to enable refined inference of bee host-associated microbial communities without any other methodological modifications necessary. It also bridges the gap between current practical outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with 100% ASVs) attainable in future microbiota investigations. Other niche habitats could also likely benefit from customized database curation via implementation of the novel approaches introduced in this study.

15.
Cell Rep Med ; 1(6): 100094, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-33205072

RESUMEN

Ureteral stents are commonly used to prevent urinary obstruction but can become colonized by bacteria and encrusted, leading to clinical complications. Despite recent discovery and characterization of the healthy urinary microbiota, stent-associated bacteria and their impact on encrustation are largely underexplored. We profile the microbiota of patients with typical short-term stents, as well as over 30 atypical cases (all with paired mid-stream urine) from 241 patients. Indwelling time, age, and various patient comorbidities correlate with alterations to the stent microbiota composition, whereas antibiotic exposure, urinary tract infection (UTI), and stent placement method do not. The stent microbiota most likely originates from adhesion of resident urinary microbes but subsequently diverges to a distinct, reproducible population, thereby negating the urine as a biomarker for stent encrustation or microbiota. Urological practice should reconsider standalone prophylactic antibiotics in favor of tailored therapies based on patient comorbidities in efforts to minimize bacterial burden, encrustation, and complications of ureteral stents.


Asunto(s)
Stents/efectos adversos , Stents/microbiología , Uréter/microbiología , Adulto , Antibacterianos/farmacología , Canadá/epidemiología , Comorbilidad , Remoción de Dispositivos , Femenino , Humanos , Masculino , Microbiota/genética , Microbiota/fisiología , Persona de Mediana Edad
16.
mSphere ; 5(5)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907948

RESUMEN

Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients.IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.


Asunto(s)
Bacillus subtilis/metabolismo , Oxalato de Calcio/metabolismo , Urolitiasis/microbiología , Animales , Modelos Animales de Enfermedad , Perros , Drosophila melanogaster/microbiología , Femenino , Ensayos Analíticos de Alto Rendimiento , Intestinos/microbiología , Células de Riñón Canino Madin Darby , Masculino , Urolitiasis/tratamiento farmacológico
17.
Nat Commun ; 11(1): 4822, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973149

RESUMEN

Abiraterone acetate (AA) is an inhibitor of androgen biosynthesis, though this cannot fully explain its efficacy against androgen-independent prostate cancer. Here, we demonstrate that androgen deprivation therapy depletes androgen-utilizing Corynebacterium spp. in prostate cancer patients and that oral AA further enriches for the health-associated commensal, Akkermansia muciniphila. Functional inferencing elucidates a coinciding increase in bacterial biosynthesis of vitamin K2 (an inhibitor of androgen dependent and independent tumor growth). These results are highly reproducible in a host-free gut model, excluding the possibility of immune involvement. Further investigation reveals that AA is metabolized by bacteria in vitro and that breakdown components selectively impact growth. We conclude that A. muciniphila is a key regulator of AA-mediated restructuring of microbial communities, and that this species may affect treatment response in castrate-resistant cohorts. Ongoing initiatives aimed at modulating the colonic microbiota of cancer patients may consider targeted delivery of poorly absorbed selective bacterial growth agents.


Asunto(s)
Acetato de Abiraterona/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Verrucomicrobia/efectos de los fármacos , Acetato de Abiraterona/metabolismo , Acetato de Abiraterona/uso terapéutico , Akkermansia , Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Bacterias/metabolismo , Heces/microbiología , Humanos , Masculino , ARN Ribosómico 16S/genética , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacología
18.
Commun Biol ; 3(1): 534, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978472

RESUMEN

Widespread antibiotic usage in apiculture contributes substantially to the global dissemination of antimicrobial resistance and has the potential to negatively influence bacterial symbionts of honey bees (Apis mellifera). Here, we show that routine antibiotic administration with oxytetracycline selectively increased tetB (efflux pump resistance gene) abundance in the gut microbiota of adult workers while concurrently depleting several key symbionts known to regulate immune function and nutrient metabolism such as Frischella perrera and Lactobacillus Firm-5 strains. These microbial changes were functionally characterized by decreased capped brood counts (marker of hive nutritional status and productivity) and reduced antimicrobial capacity of adult hemolymph (indicator of immune competence). Importantly, combination therapy with three immunostimulatory Lactobacillus strains could mitigate antibiotic-associated microbiota dysbiosis and immune deficits in adult workers, as well as maximize the intended benefit of oxytetracycline by suppressing larval pathogen loads to near-undetectable levels. We conclude that microbial-based therapeutics may offer a simple but effective solution to reduce honey bee disease burden, environmental xenobiotic exposure, and spread of antimicrobial resistance.


Asunto(s)
Antibacterianos/efectos adversos , Abejas/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Oxitetraciclina/efectos adversos , Animales , Abejas/inmunología , Abejas/microbiología , Sistema Digestivo/inmunología , Sistema Digestivo/microbiología , Microbioma Gastrointestinal/inmunología , Lactobacillus/metabolismo , Lactobacillus/fisiología , Larva/microbiología
19.
Trends Microbiol ; 28(12): 1010-1021, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32680791

RESUMEN

Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.


Asunto(s)
Abejas/inmunología , Abejas/microbiología , Interacciones Microbiota-Huesped/fisiología , Inmunidad , Animales , Resistencia a la Enfermedad/fisiología , Ecología , Lactobacillus , Microbiota , Nutrientes/deficiencia , Plaguicidas/farmacología , Probióticos , Estrés Fisiológico , Simbiosis
20.
ISME J ; 14(2): 476-491, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31664160

RESUMEN

American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.


Asunto(s)
Abejas/microbiología , Paenibacillus larvae/patogenicidad , Animales , Apicultura , Suplementos Dietéticos/microbiología , Infecciones por Bacterias Grampositivas/terapia , Lactobacillus , Probióticos/uso terapéutico , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...