Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 47(24): 6309-6312, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538425

RESUMEN

We propose the inverse design of ultracompact, broadband focusing spectrometers based on adaptive diffractive optical networks (a-DONs). Specifically, we introduce and characterize two-layer diffractive devices with engineered angular dispersion that focus and steer broadband incident radiation along predefined focal trajectories with the desired bandwidth and nanometer spectral resolution. Moreover, we systematically study the focusing efficiency of two-layer devices with side length L=100µ m and focal length f=300µ m across the visible spectrum and demonstrate accurate reconstruction of the emission spectrum from a commercial superluminescent diode. The proposed a-DONs design method extends the capabilities of efficient multi-focal diffractive optical devices to include single-shot focusing spectrometers with customized focal trajectories for applications to ultracompact spectroscopic imaging and lensless microscopy.

2.
Opt Lett ; 47(11): 2842-2845, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648944

RESUMEN

We propose an efficient inverse design approach for multifunctional optical elements based on adaptive deep diffractive neural networks (a-D2NNs). Specifically, we introduce a-D2NNs and design two-layer diffractive devices that can selectively focus incident radiation over two well-separated spectral bands at desired distances. We investigate focusing efficiencies at two wavelengths and achieve targeted spectral line shapes and spatial point-spread functions (PSFs) with optimal focusing efficiency. In particular, we demonstrate control of the spectral bandwidths at separate focal positions beyond the theoretical limit of single-lens devices with the same aperture size. Finally, we demonstrate devices that produce super-oscillatory focal spots at desired wavelengths. The proposed method is compatible with current diffractive optics and doublet metasurface technology for ultracompact multispectral imaging and lensless microscopy applications.


Asunto(s)
Dispositivos Ópticos , Microscopía , Redes Neurales de la Computación , Óptica y Fotónica
3.
Opt Lett ; 47(8): 1932, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427303

RESUMEN

We present an erratum to our Letter [Opt. Lett.46, 5360 (2021)10.1364/OL.437936]. This erratum refers to Fig. 3, where a previous version was wrongly uploaded during the final resubmission of the paper. This correction has no influence on the text, the results, and the conclusions of the original Letter.

4.
Opt Lett ; 46(21): 5360-5363, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724475

RESUMEN

We propose a novel framework for the systematic design of lensless imaging systems based on the hyperuniform random field solutions of nonlinear reaction-diffusion equations from pattern formation theory. Specifically, we introduce a new class of imaging point-spread functions (PSFs) with enhanced isotropic behavior and controllable sparsity. We investigate PSFs and modulated transfer functions for a number of nonlinear models and demonstrate that two-phase isotropic random fields with hyperuniform disorder are ideally suited to construct imaging PSFs with improved performances compared to PSFs based on Perlin noise. Additionally, we introduce a phase retrieval algorithm based on non-paraxial Rayleigh-Sommerfeld diffraction theory and introduce diffractive phase plates with PSFs designed from hyperuniform random fields, called hyperuniform phase plates (HPPs). Finally, using high-fidelity object reconstruction, we demonstrate improved image quality using engineered HPPs across the visible range. The proposed framework is suitable for high-performance lensless imaging systems for on-chip microscopy and spectroscopy applications.

5.
Opt Express ; 28(8): 11618-11633, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403669

RESUMEN

In this paper, we employ the emerging paradigm of physics-informed neural networks (PINNs) for the solution of representative inverse scattering problems in photonic metamaterials and nano-optics technologies. In particular, we successfully apply mesh-free PINNs to the difficult task of retrieving the effective permittivity parameters of a number of finite-size scattering systems that involve many interacting nanostructures as well as multi-component nanoparticles. Our methodology is fully validated by numerical simulations based on the finite element method (FEM). The development of physics-informed deep learning techniques for inverse scattering can enable the design of novel functional nanostructures and significantly broaden the design space of metamaterials by naturally accounting for radiation and finite-size effects beyond the limitations of traditional effective medium theories.

6.
Opt Lett ; 45(8): 2371-2374, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287235

RESUMEN

We design and characterize compact phase-modulated axilens devices that combine efficient point focusing and grating selectivity within four-level phase mask configurations. Specifically, we select and characterize in detail two device configurations designed for long-wavelength infrared (LWIR) operation in the $ 6\,\,\unicode{x00B5}{\rm m}\! -\! 12\,\,\unicode{x00B5}{\rm m} $6µm-12µm wavelength range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays (IR-FPAs) for use in multiband LWIR photodetection. We systematically study their focusing efficiency, spectral response, and crosstalk ratio, and we demonstrate a single-component microspectrometer. Our design method leverages the Rayleigh-Sommerfeld (RS) diffraction theory that is validated numerically using the finite element method (FEM). The proposed devices are broadband and polarization insensitive and add fundamental spectroscopic capabilities to miniaturized optical components for a number of applications in LWIR detection and spectroscopy.

7.
Sci Rep ; 9(1): 8686, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213618

RESUMEN

The goal of this letter is to introduce the concept of a non-resonant fractional random laser. This is achieved by extending the classical Letokhov model of photon diffusion through disordered gain media to fractional differential operators in space and time. Fractional transport equations effectively describe anomalous photon sub-diffusion phenomena in non-uniform random scattering media with memory and long-range spatial correlation effects. In particular, by analytically solving fractional transport equations in the one-dimensional slab geometry we obtain simple closed-form expressions for the critical amplification volumes required to initiate the laser action in both fractional-order (FO) and distributed-order (DO) space-time fractional reaction-diffusion equations. Our findings demonstrate the benefits of anomalous sub-diffusive photon transport in active media with correlated disorder and stimulate the engineering of novel non-resonant random lasers with significantly reduced footprint and amplification volumes beyond the limitations of uniform disorder and Markovian diffusion processes.

8.
Opt Lett ; 44(2): 375-378, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644903

RESUMEN

We study the compact localized scattering resonances of periodic and aperiodic chains of dipolar nanoparticles by combining the powerful equitable partition theorem (EPT) of a graph theory with the spectral dyadic Green's matrix formalism for the engineering of embedded quasi-modes in non-Hermitian open scattering systems in three spatial dimensions. We provide the analytical and numerical design of the spectral properties of compact localized states in electromagnetically coupled chains and establish a connection with the distinctive behavior of bound states in the continuum. Our results extend the concept of compact localization to the scattering resonances of open systems with an arbitrary aperiodic order beyond tight-binding models, and are relevant for the efficient design of novel photonic and plasmonic metamaterial architectures for enhanced light-matter interaction.

9.
ACS Appl Mater Interfaces ; 10(33): 27928-27935, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30051708

RESUMEN

We demonstrate a novel approach for fabricating surface enhanced Raman scattering (SERS) substrates for single bacterial biosensing based on Ag cylindrical nanotrough networks (CNNs). This approach is developed with large scalability by leveraging a cellulose nanofiber template fabrication via facile electrospinning. Specifically, a concave nanotrough structure consisting of interconnected concave Ag nanoshells is demonstrated by depositing a thin layer of Ag atop a sacrificial electrospun nanofiber template and then completely removing the cellulose core in water. Our investigations of the scattering properties and SERS performances of single isolated Ag nanotroughs of different diameters reveal that nanotrough-based substrates provide tunable optical responses and enhanced SERS intensities. Further, Ag CNNs are fabricated in highly interconnected networks that yield reproducible SERS signals for molecular monolayers and whole bacterial cells, enabling rapid spectral discrimination between different bacterial strains. Finally, by performing principal component analysis on a large number of measured SERS spectra (40 spectra per bacterium), we demonstrate successful spectral discrimination between two types of Escherichia coli ( E. coli) bacteria, that is, E. coli K12 with its derivative E. coli DH 5α and E. coli BL21(DE3). The demonstrated cost-effective substrates feature several advantages over conventional SERS substrates including environmentally friendly and scalable fabrication compatible with versatile devices and provide an alternative approach to rapid SERS detection and screening of biochemicals.


Asunto(s)
Nanofibras , Bacterias , Escherichia coli , Plata , Espectrometría Raman
10.
Opt Lett ; 43(9): 1986-1989, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714727

RESUMEN

We study the scattering resonances of one-dimensional deterministic aperiodic chains of electric dipoles using the vectorial Green's matrix method, which accounts for both short- and long-range electromagnetic interactions in open scattering systems. We discover the existence of edge-localized scattering states within fractal energy gaps with characteristic topological band structures. Notably, we report and characterize edge-localized modes in the classical wave analogues of the Su-Schrieffer-Heeger (SSH) dimer model, quasiperiodic Harper and Fibonacci crystals, as well as in more complex Thue-Morse aperiodic systems. Our study demonstrates that topological edge-modes with characteristic power-law envelope appear in open aperiodic systems and coexist with traditional exponentially localized ones. Our results extend the concept of topological states to the scattering resonances of complex open systems with aperiodic order, thus providing an important step towards the predictive design of topological optical metamaterials and devices beyond tight-binding models.

11.
Sci Rep ; 7(1): 2259, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28536441

RESUMEN

The propagation of optical pulses through primary types of deterministic aperiodic structures is numerically studied in time domain using the rigorous transfer matrix method in combination with analytical fractional transport models. We demonstrate tunable anomalous photon transport, including the elusive logarithmic Sinai sub-diffusion in photonic systems for the first time. Our results are in excellent agreement with the scaling theory of transport in aperiodic media with fractal spectra, and additionally demonstrate logarithmic sub-diffusion in the presence of multifractality. Moreover, we establish a fruitful connection between tunable photon diffusion and fractional dynamics, which provides analytical insights into the asymptotic transport regime of optical media with deterministic aperiodic order. The demonstration of tunable sub-diffusion and logarithmic photon transport in deterministic aperiodic structures can open novel and fascinating scenarios for the engineering of wave propagation and light-matter interaction phenomena beyond the conventional diffusive regime.

12.
Nat Commun ; 7: 13156, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725670

RESUMEN

Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

13.
Opt Express ; 24(17): 19048-62, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557185

RESUMEN

In this paper, we propose a novel, frequency- and angularly- broadband approach to achieve absorption rate enhancement in high-index dielectric nanostructures through the engineering of non-radiative anapole modes. We employ multipolar decomposition of numerically computed current distributions and analyze the far-field scattering power of multipole moments. By leveraging the destructive interference of electric dipole and toroidal dipole moments, we design non-radiating anapole modes and demonstrate significantly enhanced absorbed power in silicon and germanium nanostructures. We demonstrate wide wavelength tunability of the anapole-driven peak absorption enhancement for nano-disks and square nano-pixel geometries, which can be conveniently fabricated with current lithography. Finally, by combining nano-disks and nano-pixels of different sizes into functional surface units, we design nanostructured arrays with enhanced bandwidth and absorption rates that can be useful for the engineering of broadband semiconductor photodetectors driven by controllable anapole responses.

14.
Opt Lett ; 41(9): 1933-6, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27128042

RESUMEN

Using the rigorous Green's function spectral method, we systematically investigate the scattering resonances of different types of Vogel spiral arrays of point-like scatterers. By computing the distributions of eigenvalues of the Green's matrix and the corresponding eigenvectors, we obtain important physical information on the spatial nature of the optical modes, their lifetimes and spatial patterns, at small computational cost and for large-scale systems. Finally, we show that this method can be extended to the study of three-dimensional Vogel aperiodic metamaterials and aperiodic photonic structures that may exhibit a richer spectrum of localized resonances of direct relevance to the engineering of novel optical light sources and sensing devices.

15.
Opt Express ; 23(20): 25496-508, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480067

RESUMEN

In this paper, using the rigorous Surface Integral Equation (SIE) method, we study light scattering by Au nano-helices with geometrical dimensions comparable to the wavelength of visible light and we demonstrate that they behave as highly directional nano-antennas with largely controllable radiation and polarization characteristics in the optical regime. In particular, we systematically investigate the radiation properties of helical nano-antennas with realistic Au dispersion parameters in the visible spectral range, and we establish general design rules that enable the engineering of directional scattering with elliptical or circular polarization. Given the realistic material and geometric parameters used in this work, our findings provide novel opportunities for the engineering of chiral sensors, filters, and components for nano-scale antennas with unprecedented beam forming and polarization capabilities.

16.
Opt Lett ; 40(7): 1500-3, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831369

RESUMEN

We experimentally demonstrate enhanced third-harmonic generation from indium tin oxide nanolayers at telecommunication wavelengths with an efficiency that is approximately 600 times larger than crystalline silicon (Si). The increased optical nonlinearity of the fabricated nanolayers is driven by their epsilon-near-zero response, which can be tailored on-demand in the near-infrared region. The present material platform is obtained without any specialized nanofabrication process and is fully compatible with the standard Si-planar technology. The proposed approach can lead to largely scalable and highly integrated optical nonlinearities in Si-integrated devices for information processing and optical sensing applications.

17.
Sci Rep ; 5: 7651, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25564366

RESUMEN

Thanks to their special interaction with light, semiconductor nanowires have opened new avenues in photonics, quantum optics and solar energy harvesting. One of the major challenges for their full technological deployment has been their strong polarization dependence in light absorption and emission. In the past, metal nanostructures have been shown to have the ability to modify and enhance the light response of nanoscale objects. Here we demonstrate that a hybrid structure formed by GaAs nanowires with a highly dense array of bow-tie antennas is able to modify the polarization response of a nanowire. As a result, the increase in light absorption for transverse polarized light changes the nanowire polarization response, including the polarization response inversion. This work will open a new path towards the widespread implementation of nanowires applications such as in photodetection, solar energy harvesting and light emission.

18.
Nat Mater ; 13(12): 1080-1, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25410978
19.
Nano Lett ; 14(5): 2271-8, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24742076

RESUMEN

We successfully demonstrate the plasmonic coupling between metal nanoantennas and individual GaAs nanowires (NWs). In particular, by using dark-field scattering and second harmonic excitation spectroscopy in partnership with analytical and full-vector FDTD modeling, we demonstrate controlled electromagnetic coupling between individual NWs and plasmonic nanoantennas with gap sizes varied between 90 and 500 nm. The significant electric field enhancement values (up to 20×) achieved inside the NW-nanoantennas gap regions allowed us to tailor the nonlinear optical response of NWs by engineering the plasmonic near-field coupling regime. These findings represent an initial step toward the development of coupled metal-semiconductor resonant nanostructures for the realization of next generation solar cells, detectors, and nonlinear optical devices with reduced footprints and energy consumption.

20.
Nanoscale ; 5(21): 10163-70, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24056939

RESUMEN

We demonstrate morphology-dependent second-harmonic generation (SHG) from InAs V-shaped nanomembranes. We show SHG correlation with the nano-wing shape and size, experimentally quantify the SHG efficiency, and demonstrate a maximum SHG enhancement of about 500 compared to the bulk. Experimental data are supported by rigorous calculations of local electromagnetic field spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...