Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 1): 131664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636757

RESUMEN

Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a ß-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.


Asunto(s)
Fructanos , Metales Pesados , Pseudomonas , Fructanos/química , Fructanos/metabolismo , Pseudomonas/metabolismo , Metales Pesados/metabolismo , Lagos/microbiología , Fermentación , Peso Molecular
2.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37514369

RESUMEN

This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.

4.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37049377

RESUMEN

Plasticized nanocomposites based on poly(lactic acid) have been prepared by melt mixing following a two-step approach, adding two different oligomeric esters of lactic acid (OLAs) as plasticizers and fumed silica nanoparticles. The nanocomposites maintained a remarkable elongation at break in the presence of the nanoparticles, with no strong effects on modulus and strength. Measuring thermo-mechanical properties as a function of aging time revealed a progressive deterioration of properties, with the buildup of phase separation, related to the nature of the plasticizer. Materials containing hydroxyl-terminated OLA showed a higher stability of properties upon aging. On the contrary, a synergistic effect of the acid-terminated plasticizer and silica nanoparticles was pointed out, inducing an accelerated hydrolytic degradation of PLA: materials at high silica content exhibited a marked brittleness and a dramatic decrease of molecular weight after 16 weeks of aging.

5.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979012

RESUMEN

The aim of this work was to exploit the antioxidant potential of molecules recovered during the pectin purification process of citrus lemon waste and to encapsulate them in stable pectin films, with a view to a green and circular economy process. Antioxidant molecules were recovered during the pectin purification process, further recovering matter from the waste. Seven molecules were identified and quantified, and the antioxidant power of the mixture and its stability over time was evaluated. To improve the stability of the bioactive fraction, this was complexed with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD); indeed, this procedure increased their thermal stability from 120 °C up to 250 °C, as verified by thermogravimetry. Furthermore, the most promising complexes were studied under autoclave-like conditions (120 °C, 28 min) to simulate thermal sterilization. The antioxidants and HP-ß-CD were combined in a pectin film, showing increased stability over time (up to three times) compared to uncomplexed antioxidants. This process represents a first step towards the development of applicable devices for the delivery of antioxidant molecules.

6.
Int J Pharm ; 633: 122618, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36657553

RESUMEN

Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Docetaxel , Antineoplásicos/farmacología , Polímeros , Péptidos , Línea Celular Tumoral , Portadores de Fármacos
7.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501486

RESUMEN

Alkali activated binders, based on an aluminosilicate powder that is activated by an alkaline solution, have been proven to encapsulate a wide number of different wastes, both in the form of liquids and solids. In this study, we investigated the effect that the addition of a spent abrasive powder, mainly composed of corundum grains (RC), had on the mechanical, physical, and chemical properties of metakaolin-based geopolymers. The waste was introduced into the geopolymer matrix as a substitute for metakaolin, or added as a filler to the geopolymeric paste. The 3D cross-linking of the geopolymer structure, with and without the presence of the corundum, was investigated via Fourier transform infrared spectroscopy, X-ray diffraction, and ionic conductivity measurements of the eluate that was produced after 24 h of immersion of the sample in water. The RC powder did not significantly modify the matrix reticulation but increased densification, as observed with scanning electron microscopy, and there was increased resistance to compression by 10 wt% addition of RC, and also when added to the paste as a filler at 20 wt%.

8.
Foods ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36230108

RESUMEN

Globe artichoke roots represent an alternative and sustainable source for inulin extraction and are well-noted for their technological and functional properties. Therefore, the aim of our study was to exploit inulin with high degree of polymerization as a replacement of durum wheat semolina for the production of functional fresh pasta. The effect of increased level of substitution (5, 10, 15%) on cooking, structural, sensory, and nutritional properties were evaluated and compared with a control sample consisting exclusively of durum wheat semolina. Inulin addition caused changes to internal structure as evaluated by scanning electron microscopy. The enriched samples showed a lower swelling index, an increasing cooking time, and values of cooking loss (2.37-3.62%), mainly due to the leaching of inulin into the cooking water. Cooked and raw enriched pasta was significantly darker and firmer than the control, but the sensory attributes were not negatively affected, especially at 5 and 10% of substitution levels. The increase of dietary fiber content in enriched pasta (3.44-12.41 g/100 g) resulted in a significant reduction of glycaemic index (pGI) and starch hydrolysis (HI). After gastrointestinal digestion, inulin-enriched pasta increased prebiotic growth able to significantly reduce E. coli cell density.

9.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015635

RESUMEN

Over the years, many materials have been used to restore buildings, paintings, ceramics, and mosaic pieces exhibiting different types of dyes and colour hues. Recently, geopolymers have been used for restoration purposes owing to their high chemical and mechanical resistance. In this work, white metakaolin was used to obtain white geopolymers, cured at 25 and 40 °C, as bulk materials to be coloured with synthetic organic dyes, i.e., bromothymol blue, cresol red, phenolphthalein, and methyl orange. These dyes were added during the fresh paste preparation to obtain dyed geopolymeric solids. Ionic conductivity and pH measurement confirmed the chemical stability of the consolidated materials, while FT-IR analyses were used to follow the geopolymerisation occurrences at different ageing times (from 7 to 56 days). Finally, the colour hues and properties were assessed in the CIELAB colour space before and after immersion in water.

10.
Polymers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683848

RESUMEN

Recycling corundum abrasive powder in metakaolin-based geopolymer formulations is proposed to reduce the amount of waste to be treated or disposed of in landfills, allowing to decrease ecological damage as well as to reduce transport costs for removal. The addition of waste corundum, as an important source of Al2O3, has proved to increase the slight ionic conductivity of the leachate solution obtained after immersion in water of samples at 28 d of curing at room temperature. With the same curing conditions, the geopolymerization process has not been disturbed as evidenced by the FT-IR peak shift and XRD patterns. It was recorded a decrease in resistance to compression of the consolidated geopolymers of about 5% with 10 wt% addition and of about 77% with the addition of 20 wt% of waste corundum. In any case, the waste abrasive powder does not release heavy metals when added to a geopolymeric formulation based on MK, NaOH, and Na-silicate, and does not show relevant antibacterial properties, indicating the formation of a stable and safe final product with a ceramic-like appearance.

11.
Drug Deliv Transl Res ; 12(10): 2488-2500, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34973132

RESUMEN

A biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate receptor-α (FRα) and the anti-angiogenic hexapeptide aFLT1. NPs showed a size around 100 nm, the exposure of 60% of Fol moieties on the surface, and the ability to entrap DTX and sustain its release with time. NPs were stable in simulated biological fluids and slightly interacted with Fetal Bovine serum, especially in the formulation decorated with Fol and aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro, the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRα-positive KB cancer cells depending on the type of ligand displayed on the surface. In particular, NPs unmodified on the surface were randomly distributed in the spheroid, whereas the presence of Fol promoted the accumulation in the outer rims of the spheroid. Finally, NPs with Fol and aFLT1 gave a uniform distribution throughout the spheroid structure. When tested in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited the growth of the tumor mass and associated vasculature synergistically. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to novel multifunctional nanopharmaceuticals decorated with bioactive elements that can significantly improve therapeutic outcomes.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Antineoplásicos/química , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/química , Células Endoteliales , Ácido Fólico/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Pez Cebra
12.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503010

RESUMEN

Food containers made from glass are separately collected from urban solid waste at 76% in most parts of Europe. The cullet glass finds its way to re-melting, while the debris is often disposed of. With this contribution, we suggest an upcycling process where glass debris is simply ground without any washing operation and added to an alkali-activated paste. Metakaolin-based geopolymer mortar added with coarsely ground glass waste as fine aggregate has been prepared via alkali activation with NaOH and Na-silicate. After 7, 14 and 28 days of room temperature curing time, the 3D geopolymer network was investigated by Fourier-transform infrared spectroscopy (FT-IR). Vibrational spectra revealed the geopolymerization occurrences, results which have been supported by both FT-IR deconvoluted spectra and thermogravimetric analysis (TGA). Finally, the antibacterial properties were investigated against both gram-negative (E. coli) and gram-positive (E. faecalis) bacterial strains. The results suggest the ability of the 28 days cured geopolymers to inhibit the growth of the gram-negative bacterium assayed.

13.
Biomater Sci ; 9(18): 6251-6265, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369494

RESUMEN

Nowadays, the clinical administration of siRNA therapeutics is still challenging due to the need of safe and efficient delivery carriers. In this context, biodegradable and amphiphilic triblock copolymers (ABC) containing amine-based cationic segments could be a powerful tool for siRNA delivery. Herein, we propose a range of poly(ethylene glycol) (PEG)-poly(2-dimethyl(aminoethyl) methacrylate) (pDMAEMA)-polycaprolactone (PCL) copolymers with different lengths of the blocks and hydrophilic/lipophilic balance to deliver siRNA alone or in association with a conventional anticancer drug. mPEG-pDMAEMA-PCL copolymers were synthesized by a combination of techniques and characterized by NMR analysis, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Copolymers were then employed to prepare NPs through nanoprecipitation. NPs based on copolymers with long PCL chains (SSL-NPs and LLL-NPs) showed the best colloidal properties and a highly stable core-shell structure with a better orientation of the PEG fringe on the surface. Concerning siRNA delivery, SSL-NPs based on copolymers with short PEG and pDMAEMA chains showed optimized ability to complex and then deliver siRNA at the cell level. The strong interaction between the nucleic acid and the cationic pDMAEMA blocks of NPs was then confirmed by release studies that showed a sustained release of siRNA within 48 h. The transfection efficiency of NPs was assessed in human melanoma cells. NPs were complexed with a therapeutic siRNA against TUBB3 (TUB-siRNA). We observed the best results with SSL-NPs, probably due to the higher preserved buffer capacity of the pDMAEMA blocks. Finally, in order to give a proof of concept of a possible application in the combined chemo/gene-therapy of cancer, SSL-NPs complexed with TUB-siRNA were loaded with docetaxel (DTX) and then cytotoxicity was evaluated in the same cell line. The co-delivery of TUB-siRNA into NPs appeared to strongly potentiate the anti-proliferative activity of DTX, thus highlighting the combinatory activity of the NPs.


Asunto(s)
Antineoplásicos , Nanopartículas , Cationes , Portadores de Fármacos , Humanos , Poliésteres , Polietilenglicoles , Polímeros , ARN Interferente Pequeño
14.
Artículo en Inglés | MEDLINE | ID: mdl-34444214

RESUMEN

Copper-based phytosanitary treatments are widely employed in viticulture for combating the fungal diseases of European grape (Vitis vinifera L.). Herein we evaluated copper accumulation in the soil of a 50-year-old still productive vineyard in South Italy in comparison with samples taken from a 'control' area in which grapevines had never been cultivated, as well from an abandoned vineyard, now planted with cereals and forage crops, both close to the main area under investigation. Even though the heavy metal contents detected were not of concern for soils nor for wine, Cu accumulates in the soil in amounts significantly higher than the (grapevine free) control and remains at detectable concentrations also in abandoned vineyards where spraying activities had ceased about 20 years before this study. Despite the long Cu residence times in soil, the wine produced with grapes of the same vineyard showed Cu levels low enough to be safely used for human consumption, probably due to mechanisms of metal precipitation occurring during wine maturation, which are typically accompanied by sedimentation processes in artisanal production. However, this should not diminish the urgency of decreasing the copper usage as antifungal remedy in viticulture to prevent copper contamination of the agricultural soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Vino , Cobre/análisis , Granjas , Humanos , Persona de Mediana Edad , Suelo , Contaminantes del Suelo/análisis
15.
Polymers (Basel) ; 13(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066545

RESUMEN

Reuse of waste glass can significantly decrease the quantity of waste to be treated or disposed of in landfills, allowing to both diminish the ecological damage and to reduce the costs of transportation for removal. Geopolymer mixes with diverse percentages (20, 50 and 60 wt%) and with different grain size ranges (37 µm < diam < 53 µm; 75 µm < diam < 105 µm) of waste glass and the residual part of pure metakaolin were prepared by addition of NaOH and sodium silicate as alkaline activator solutions. The effect of waste glass on the mechanical and microstructure of new geopolymers has been explored in this study. Fourier transform infrared spectroscopy (FTIR) evidenced the reactivity of waste glass in terms of Si-O and Si-O-Al bonds, more evident for the finer waste glass powder. The consolidation of the materials has been established by reduced weight loss in water and decreased pH and ionic conductivity of the eluate after 7, 14 and 28 days of curing at room temperature. The decrease of the mechanical properties with waste glass content was less evident for the finer glassy powders, yet the value of about 4-5 MPa indicates their potential use as non-structural materials. The consolidated final materials were tested for their effects on the microbial growth of Escherichia coli and Enterococcus faecalis after 24 and 48 h, respectively. The samples showed a very limited and absent inhibition zone, for fine and coarse grain size ranges, respectively. Finally, the cytotoxicity tests accomplished the ecological valuation of the final consolidated products.

16.
Polymers (Basel) ; 13(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919976

RESUMEN

Citrus pomace derived from the industrial processing of juice and essential oils mostly consists of pectin, cellulose, hemicellulose, and simple sugars. In this work, citrus pomace waste from an agricultural company in South Italy was used as source of pectin. The extraction conditions of the polysaccharide were optimized using a suitable combination of time and a concentration of a mild organic solvent, such as acetic acid; thus recovering high Mw pectin and bioactive molecules (flavonoids and polyphenols). The pectin was structurally (GPC, FTIR), morphologically (SEM), thermally (TGA/DTG), and mechanically characterized, while bioactive molecules were separated and the total phenolic content (TPC) and total flavonoids content (TFC) were evaluated. With the aim to develop novel biocomposite-based materials, the pectin extracted from citrus waste was reinforced with different amounts of lignocellulose fractions also recovered from citrus waste after polysaccharide extraction, according to a "zero waste" circular economy approach. The prepared biocomposites were morphologically and mechanically characterized to be used as biodegradable mulching systems for crop protection. Thus, the citrus waste biomass was recovered, fractionated into its main raw materials, and these were recombined to develop novel upgraded biocomposites for mulching applications, by means of a cost-effective and eco-sustainable approach.

17.
3 Biotech ; 10(9): 395, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32832343

RESUMEN

In this study, we firstly reported the production and the structural characterization of a novel hetero-exopolysaccharide namely EPS-K2 from the extremely halophilc Halomonas smyrnensis K2. Results revealed that EPS-K2 was mainly composed of three monosaccharides including mannose (66.69%), glucose (19.54%) and galactose (13.77%). EPS-K2 showed high thermostability with a degradation temperature around 260 °C, which could make it a suitable candidate for application in thermal processes. Moreover, EPS-K2 showed attractive functional properties. In fact, it exhibited potent antioxidant activity in a dose-dependent manner as assessed in analyses of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, iron chelating and DNA protection ability. Furthermore, EPS-K2 showed strong adhesion inhibition activity against Enterococcus faecalis (75.52 ± 3.35%) and Escherichia coli (61.95 ± 2.48%) at 1 g/l concentration, as well as a high biofilm disruption activity especially against E. coli (70.73 ± 2.78%), at 2 g/l concentration. According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.

18.
Polymers (Basel) ; 12(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331367

RESUMEN

In the present paper, we investigate the effectiveness of nanocomposites (composed of ultra-high molecular weight polyethylene (UHMWPE) mixed with carbon nano-filler (CNF) and medical grade paraffin oil (PO), from the biological point of view. Wear measurements were carried out without (air) and with lubricant (distilled water, natural, and artificial lubricant), and antibacterial activity and cytotoxicity were evaluated. The results highlighted that the presence of CNF is important in the nanocomposite formulation because it reduces the wear rate and prevents oxidative degradation during its processing. An amount of 1.0 wt % of CNF is best because it reaches the optimal distribution within the polymeric matrix, resulting in the best wear resistant, bio-active, and anti-bacterial nanocomposite among all investigated samples.

19.
Materials (Basel) ; 13(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952164

RESUMEN

The sol-gel route represents a valuable technique to obtain functional materials, in which organic and inorganic members are closely connected. Herein, four hybrid materials, containing caffeic acid entrapped in a silica matrix at 5, 10, 15, and 20 wt.%, were synthesized and characterized through Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR analysis was also performed to evaluate the ability to induce the hydroxyapatite nucleation. Despite some structural changes occurring on the phenol molecular skeleton, hybrid materials showed scavenging properties vs. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation (ABTS•+), which was dependent on the tested dose and on the caffeic acid wt.%. The SiO2/caffeic acid materials are proposed as valuable antibacterial agents against Escherichia coli and Enterococcus faecalis.

20.
Pharmaceutics ; 12(1)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940787

RESUMEN

Given the limited number of materials available to design delivery platforms for nutrients, the rational combination of raw materials already approved as food ingredients and their processing through nano-micro technology can offer a unique tool for innovation. Here, we propose a nano-in-micro strategy to produce powders based on the hydrophobic protein zein, useful for the oral delivery of a hydrophilic iron source (iron bisglycinate) in anaemic patients. Iron-loaded powders were prepared through a two-step strategy consisting in the formation of a zein pseudolatex followed by a spray-drying step. To extend the manipulation space for zein and entrap iron bisglycinate, ß-cyclodextrin (ßCD) was selected as helping excipient. Addition of ßCD allowed iron loading in the pseudolatex and greatly increased product yields after the drying process as compared to zein alone. Iron-loaded micro-sized powders were characterised by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the role of ßCD as a compatibilizer for the zein-iron system. Remarkably, micropowders released only 20% of FeBIS in a simulated gastric fluid, whereas release in a simulated intestinal fluid was almost completed in 7 h. In summary, ßCD association to zein is a novel strategy to expand applications in the oral delivery of iron bisglycinate and, prospectively, to micronutrient chelates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...