Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
Clin Oral Investig ; 28(9): 476, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120764

RESUMEN

OBJECTIVES: To synthesize casein enzymatic hydrolysate (CEH)-laden gelatin methacryloyl (GelMA) fibrous scaffolds and evaluate the cytocompatibility and anti-inflammatory effects on dental pulp stem cells (DPSCs). MATERIALS AND METHODS: GelMA fibrous scaffolds with 10%, 20%, and 30% CEH (w/w) and without CEH (control) were obtained via electrospinning. Chemo-morphological, degradation, and mechanical analyses were conducted to evaluate the morphology and composition of the fibers, mass loss, and mechanical properties, respectively. Adhesion/spreading and viability of DPSCs seeded on the scaffolds were also assessed. The anti-inflammatory potential on DPSCs was tested after the chronic challenge of cells with lipopolysaccharides (LPS), followed by treatment with extracts obtained after immersing the scaffolds in α-MEM. The synthesis of the pro-inflammatory cytokines IL-6, IL-1α, and TNF-α was measured by ELISA. Data were analyzed by ANOVA/post-hoc tests (α = 5%). RESULTS: CEH-laden electrospun fibers had a larger diameter than pure GelMA (p ≤ 0.036). GelMA scaffolds laden with 20% and 30% CEH had a greater mass loss. Tensile strength was reduced for the 10% CEH fibers (p = 0.0052), whereas no difference was observed for the 20% and 30% fibers (p ≥ 0.6736) compared to the control. Young's modulus decreased with CEH (p < 0.0001). Elongation at break increased for the 20% and 30% CEH scaffolds (p ≤ 0.0038). Over time, DPSCs viability increased across all groups, indicating cytocompatibility, with CEH-laden scaffolds exhibiting greater cell viability after seven days (p ≤ 0.0166). Also, 10% CEH-GelMA scaffolds decreased the IL-6, IL-1α, and TNF-α synthesis (p ≤ 0.035). CONCLUSION: CEH-laden GelMA scaffolds facilitated both adhesion and proliferation of DPSCs, and 10% CEH provided anti-inflammatory potential after chronic LPS challenge. CLINICAL RELEVANCE: CEH incorporated in GelMA fibrous scaffolds demonstrated the potential to be used as a cytocompatible and anti-inflammatory biomaterial for vital pulp therapy.


Asunto(s)
Antiinflamatorios , Caseínas , Supervivencia Celular , Pulpa Dental , Gelatina , Andamios del Tejido , Gelatina/química , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Andamios del Tejido/química , Humanos , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Metacrilatos/química , Ensayo de Materiales , Ensayo de Inmunoadsorción Enzimática , Resistencia a la Tracción , Células Cultivadas , Células Madre/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Citocinas/metabolismo , Propiedades de Superficie
2.
J Endod ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39155022

RESUMEN

INTRODUCTION: Recognizing the necessity of novel disinfection strategies for improved bacterial control to ultimately favor tissue regeneration, this study developed and characterized antibiotics-laden silk fibroin methacrylated (SilkMA) scaffolds for regenerative endodontics. METHODS: SilkMA-based solutions (10% w/v) containing clindamycin (CLI) or tinidazole (TIN) (0 - control; 5, 10, or 15% w/w) or the combination of both drugs (BiMix CLI/TIN 10%) were electrospun and photocrosslinked. Morphology and composition were assessed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Additionally, swelling and degradation profiles were also determined. Cytotoxicity was evaluated in stem cells from apical papilla (SCAPs). Antibacterial efficacy was tested using direct and indirect contact assays against Aggregatibacter actinomycetemcomitans/Aa, Actinomyces naeslundii/An, Enterococcus faecalis/Ef, and Fusobacterium nucleatum/Fn. E. faecalis biofilm inhibition on dentin discs was specifically evaluated for BiMix-laden scaffolds. Data were statistically analyzed with a significance level of 5%. RESULTS: SEM revealed that all scaffolds had similar characteristics, including fiber morphology and bead absence. FTIR showed the incorporation of CLI and TIN into the fibers and in BiMix scaffolds. Antibiotic-laden scaffolds exhibited lower swelling capacity than the control and were degraded entirely after 45 days. Scaffolds laden with CLI, TIN, or BiMix throughout all time points did not reduce SCAPs' viability. CLI-laden scaffolds inhibited the growth of Aa, An, and Ef, while TIN-laden scaffolds inhibited Fn growth. BiMix-laden scaffolds significantly inhibited Aa, An, Ef, and Fn in direct contact, and their aliquots inhibited An and Fn through indirect contact, with additional biofilm inhibition against Ef. CONCLUSIONS: BiMix-laden SilkMA scaffolds are cytocompatible and exhibit antimicrobial effects against endodontic pathogens, indicating their therapeutic potential as a drug delivery system for regenerative endodontics.

3.
Int J Oral Sci ; 16(1): 50, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956025

RESUMEN

Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide-eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.


Asunto(s)
Lipoproteínas HDL , FN-kappa B , Periodontitis Periapical , Animales , Periodontitis Periapical/terapia , Ratones , Lipopolisacáridos , Osteogénesis/efectos de los fármacos , Humanos , Osteoclastos/efectos de los fármacos , Nanopartículas
4.
Braz Oral Res ; 38: e056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016365

RESUMEN

This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.


Asunto(s)
Dentina , Fluoruros Tópicos , Ensayo de Materiales , Polifosfatos , Fluoruro de Sodio , Propiedades de Superficie , Erosión de los Dientes , Bovinos , Animales , Polifosfatos/farmacología , Polifosfatos/química , Dentina/efectos de los fármacos , Fluoruro de Sodio/farmacología , Erosión de los Dientes/prevención & control , Fluoruros Tópicos/farmacología , Análisis de Varianza , Factores de Tiempo , Propiedades de Superficie/efectos de los fármacos , Distribución Aleatoria , Reproducibilidad de los Resultados , Nanopartículas/química , Abrasión de los Dientes/prevención & control , Saliva Artificial/química , Ácido Cítrico/farmacología , Valores de Referencia , Pruebas de Dureza
5.
Arch Oral Biol ; 165: 106027, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870610

RESUMEN

OBJECTIVE: This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN: hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS: At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS: FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Ligamento Periodontal , Humanos , Fosfatasa Alcalina/metabolismo , Proceso Alveolar/citología , Proceso Alveolar/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/efectos de los fármacos
6.
Dent Mater ; 40(9): 1353-1363, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876826

RESUMEN

OBJECTIVE: To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties. METHODS: GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, OPN, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %). RESULTS: NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed downregulation of inflammatory markers and higher collagen synthesis (p < 0.05). SIGNIFICANCE: GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators' synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.


Asunto(s)
Proliferación Celular , Flavanonas , Gelatina , Metacrilatos , Osteogénesis , Andamios del Tejido , Andamios del Tejido/química , Gelatina/química , Humanos , Flavanonas/farmacología , Flavanonas/química , Osteogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Metacrilatos/química , Células Madre Mesenquimatosas/efectos de los fármacos , Antiinflamatorios/farmacología , Fosfatasa Alcalina/metabolismo , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Factor de Necrosis Tumoral alfa , Ingeniería de Tejidos , Subunidad alfa 1 del Factor de Unión al Sitio Principal
7.
J Funct Biomater ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667562

RESUMEN

This study aimed to develop gelatin methacryloyl (GelMA)-injectable hydrogels incorporated with 58S bioactive glass/BG-doped with strontium for vital pulp therapy applications. GelMA hydrogels containing 0% (control), 5%, 10%, and 20% BG (w/v) were prepared. Their morphological and chemical properties were evaluated by scanning electron microscopy/SEM, energy dispersive spectroscopy/EDS, and Fourier transform infrared spectroscopy/FTIR (n = 3). Their swelling capacity and degradation ratio were also measured (n = 4). Cell viability (n = 8), mineralized matrix formation, cell adhesion, and spreading (n = 6) on DPSCs were evaluated. Data were analyzed using ANOVA/post hoc tests (α = 5%). SEM and EDS characterization confirmed the incorporation of BG particles into the hydrogel matrix, showing GelMA's (C, O) and BG's (Si, Cl, Na, Sr) chemical elements. FTIR revealed the main chemical groups of GelMA and BG, as ~1000 cm-1 corresponds to Si-O and ~1440 cm-1 to C-H. All the formulations were degraded by day 12, with a lower degradation ratio observed for GelMA+BG20%. Increasing the concentration of BG resulted in a lower mass swelling ratio. Biologically, all the groups were compatible with cells (p > 0.6196), and cell adhesion increased over time, irrespective of BG concentration, indicating great biocompatibility. GelMA+BG5% demonstrated a higher deposition of mineral nodules over 21 days (p < 0.0001), evidencing the osteogenic potential of hydrogels. GelMA hydrogels incorporated with BG present great cytocompatibility, support cell adhesion, and have a clinically relevant degradation profile and suitable mineralization potential, supporting their therapeutic potential as promising biomaterials for pulp capping.

8.
Adv Healthc Mater ; 13(18): e2304537, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38529835

RESUMEN

Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.


Asunto(s)
Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Regeneración/fisiología , Andamios del Tejido/química , Encía , Animales , Materiales Biocompatibles/química , Impresión Tridimensional , Recesión Gingival/terapia , Bioimpresión/métodos
9.
Acta Biomater ; 173: 495-508, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939819

RESUMEN

Pulp capping is a necessary procedure for preserving the vitality and health of the dental pulp, playing a crucial role in preventing the need for root canal treatment or tooth extraction. Here, we developed an electrospun gelatin methacryloyl (GelMA) fibrous scaffold incorporating beta-tricalcium phosphate (TCP) particles for pulp capping. A comprehensive morphological, physical-chemical, and mechanical characterization of the engineered fibrous scaffolds was performed. In vitro bioactivity, cell compatibility, and odontogenic differentiation potential of the scaffolds in dental pulp stem cells (DPSCs) were also evaluated. A pre-clinical in vivo model was used to determine the therapeutic role of the GelMA/TCP scaffolds in promoting hard tissue formation. Morphological, chemical, and thermal analyses confirmed effective TCP incorporation in the GelMA nanofibers. The GelMA+20%TCP nanofibrous scaffold exhibited bead-free morphology and suitable mechanical and degradation properties. In vitro, GelMA+20%TCP scaffolds supported apatite-like formation, improved cell spreading, and increased deposition of mineralization nodules. Gene expression analysis revealed upregulation of ALPL, RUNX2, COL1A1, and DMP1 in the presence of TCP-laden scaffolds. In vivo, analyses showed mild inflammatory reaction upon scaffolds' contact while supporting mineralized tissue formation. Although the levels of Nestin and DMP1 proteins did not exceed those associated with the clinical reference treatment (i.e., mineral trioxide aggregate), the GelMA+20%TCP scaffold exhibited comparable levels, thus suggesting the emergence of differentiated odontoblast-like cells capable of dentin matrix secretion. Our innovative GelMA/TCP scaffold represents a simplified and efficient alternative to conventional pulp-capping biomaterials. STATEMENT OF SIGNIFICANCE: Vital pulp therapy (VPT) aims to preserve dental pulp vitality and avoid root canal treatment. Biomaterials that bolster mineralized tissue regeneration with ease of use are still lacking. We successfully engineered gelatin methacryloyl (GelMA) electrospun scaffolds incorporated with beta-tricalcium phosphate (TCP) for VPT. Notably, electrospun GelMA-based scaffolds containing 20% (w/v) of TCP exhibited favorable mechanical properties and degradation, cytocompatibility, and mineralization potential indicated by apatite-like structures in vitro and mineralized tissue deposition in vivo, although not surpassing those associated with the standard of care. Collectively, our innovative GelMA/TCP scaffold represents a simplified alternative to conventional pulp capping materials such as MTA and Biodentine™ since it is a ready-to-use biomaterial, requires no setting time, and is therapeutically effective.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Andamios del Tejido/química , Células Cultivadas , Materiales Biocompatibles/química , Diferenciación Celular , Apatitas/farmacología , Pulpa Dental
10.
Braz. oral res. (Online) ; 38: e056, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1564205

RESUMEN

Abstract This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.

11.
Gels ; 9(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998987

RESUMEN

Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.

12.
J Funct Biomater ; 14(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37504845

RESUMEN

The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414-672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function.

13.
ACS Appl Mater Interfaces ; 15(27): 32121-32135, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364054

RESUMEN

Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (ß-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and ß-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Ratas , Animales , Materiales Biocompatibles/farmacología , Regeneración Ósea , Fosfatos de Calcio/farmacología , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
14.
Biomater Adv ; 150: 213427, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37075551

RESUMEN

Currently employed approaches and materials used for vital pulp therapies (VPTs) and regenerative endodontic procedures (REPs) lack the efficacy to predictably achieve successful outcomes due to their inability to achieve adequate disinfection and/or lack of desired immune modulatory effects. Natural polymers and medicinal herbs are biocompatible, biodegradable, and present several therapeutic benefits and immune-modulatory properties; thus, standing out as a clinically viable approach capable of establishing a conducive environment devoid of bacteria and inflammation to support continued root development, dentinal bridge formation, and dental pulp tissue regeneration. However, the low stability and poor mechanical properties of the natural compounds have limited their application as potential biomaterials for endodontic procedures. In this study, Aloe vera (AV), as a natural antimicrobial and anti-inflammatory agent, was incorporated into photocrosslinkable Gelatin methacrylate (GelMA) nanofibers with the purpose of developing a highly biocompatible biomaterial capable of eradicating endodontic infection and modulating inflammation. Stable GelMA/AV nanofibers with optimal properties were obtained at the ratio of (70:30) by electrospinning. In addition to the pronounced antibacterial effect against Enterococcus faecalis, the GelMA/AV (70:30) nanofibers also exhibited a sustained antibacterial activity over 14 days and significant biofilm reduction with minimal cytotoxicity, as well as anti-inflammatory properties and immunomodulatory effects favoring healing. Our results indicate that the novel GelMA/AV (70:30) nanofibers hold great potential as a biomaterial strategy for endodontic infection eradication and enhanced healing.


Asunto(s)
Aloe , Nanofibras , Gelatina/farmacología , Desinfección , Nanofibras/uso terapéutico , Antibacterianos , Materiales Biocompatibles
15.
Dent Mater ; 39(4): 333-349, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894414

RESUMEN

OBJECTIVES: The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS: An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS: We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE: Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.


Asunto(s)
Materiales Biocompatibles , Pulpa Dental , Pulpa Dental/metabolismo , Ingeniería de Tejidos , Tratamiento del Conducto Radicular , Regeneración/fisiología
16.
ACS Appl Mater Interfaces ; 15(10): 12735-12749, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854044

RESUMEN

Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.


Asunto(s)
Ligamento Periodontal , Periodontitis , Ratas , Animales , Andamios del Tejido/química , Huesos , Osteogénesis , Poliésteres/química , Periodontitis/terapia , Ingeniería de Tejidos/métodos , Regeneración Ósea
17.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430238

RESUMEN

This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.


Asunto(s)
Azitromicina , Hidrogeles , Ratas , Humanos , Animales , Azitromicina/farmacología , Hidrogeles/química , Gelatina/química , Control de Infecciones
18.
Arch Oral Biol ; 143: 105541, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116379

RESUMEN

OBJECTIVE: to investigate the ability of solutions containing sodium hexametaphosphate, fluoride and quercetin, alone or in association, to prevent dentin erosion and to inhibit matrix metalloproteinases -2 and -9 activity using in vitro protocols. DESIGN: Root dentin blocks (n = 96) were prepared and divided into 8 experimental groups (n = 12/group), according to the solutions to be tested: Placebo; 0.24% sodium fluoride (F); 1.0% sodium hexametaphosphate (HMP); 0.03% quercetin (QC); F+HMP; F+QC; HMP+QC; and F+HMP+QC. Erosive challenges were performed 4×/day for 5 days. Specimens were treated with the respective solutions for one minute, twice a day. Next, dentin loss (profilometry) and integrated hardness area in depth (KHN × µm) were determined. The antiproteolytic potential was assessed by gelatin zymography. Dentin erosion results (log10-transformed) were submitted to one-way ANOVA, followed by Tukey's test. Integrated hardness area in depth data (raw) were submitted to two-way, repeated-measures ANOVA, followed by Holm-Sidak's test (p<0.05). RESULTS: Dentin erosion was significantly lower for F+HMP+QC than for all other treatments. At the shallowest depths (5-30 µm), blocks treated with F+HMP+QC had the highest integrated hardness area in depth values. All treatments completely inhibited matrix metalloproteinases-2 activity, except for the group QC (77% inhibition). For matrix metalloproteinases-9, all HMP-containing solutions or F+QC promoted total antiproteolytic activity. CONCLUSION: The association of fluoride, sodium hexametaphosphate, and quercetin must be considered a valuable strategy for novel product formulation for home and professional use, considering its superior protective effects against dentin erosion and its antiproteolytic potential.


Asunto(s)
Fluoruros , Erosión de los Dientes , Dentina , Fluoruros/farmacología , Gelatina/farmacología , Humanos , Metaloproteinasa 2 de la Matriz , Fosfatos , Quercetina/farmacología , Fluoruro de Sodio/farmacología , Erosión de los Dientes/tratamiento farmacológico , Erosión de los Dientes/prevención & control
19.
Int Endod J ; 54(12): 2276-2289, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34534374

RESUMEN

AIM: To evaluate the effect of red wine consumption or its polyphenols on the inflammation/resorption processes associated with apical periodontitis in rats. METHODOLOGY: Thirty-two three-month-old Wistar rats had apical periodontitis induced in four first molars and were then arranged into four groups: control (C)-rats with apical periodontitis; wine (W)-rats with apical periodontitis receiving 4.28 ml/kg of red wine; resveratrol+quercetin (R+Q)-rats with apical periodontitis receiving 4.28 ml/kg of a solution containing 1.00 mg/L of quercetin and 0.86 mg/L of resveratrol and alcohol (ALC)-rats with apical periodontitis receiving the alcoholic dose contained in the wine. The oral gavage treatments were administered daily, from day 0 to day 45. On the 15th day, apical periodontitis was induced, and on the 45th day, the animals were euthanized. Histological, immunohistochemical (RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1ß) and micro-computed tomography for bone resorption analysis were performed in the jaws. The Kruskal-Wallis with Dunn's test was performed for nonparametric data, and the anova with Tukey's test for parametric data, p < .05. RESULTS: The median score of the inflammatory process was significantly lower in the R+Q group (1) compared to the C (2) (p = .0305) and ALC (3) (p = .0003) groups, and not different from the W (1.5) group. The immunolabeling for OPG was significantly higher in the R+Q group (p = .0054) compared to all groups; the same was observed for IL-10 (p = .0185), different from groups C and ALC. The R+Q group had the lowest TRAP cell count (p < .0001), followed by the W group, both inferior to C and ALC groups. The lowest bone resorption value was in the R+Q group (0.50mm3  ± 0.21mm3 ), significantly lower (p = .0292) than the C group (0.88mm3  ± 0.10mm3 ). The W group (0.60 mm3  ± 0.25 mm3 ) and R+Q group had less bone resorption compared to the ALC group (0.97 mm3  ± 0.22 mm3 ), p = .0297 and p = .0042, respectively. CONCLUSION: Red wine administration to rats for 15 days before induction of apical periodontitis decreased inflammation, TRAP marking and periapical bone resorption compared to alcohol. Resveratrol-quercetin administration reduced the inflammatory process in apical periodontitis, periapical bone resorption, and altered the OPG, IL-10 and TRAP expression compared to C and ALC groups.


Asunto(s)
Periodontitis Periapical , Vino , Animales , Periodontitis Periapical/tratamiento farmacológico , Polifenoles/farmacología , Ratas , Ratas Wistar , Microtomografía por Rayos X
20.
Int Endod J ; 54(10): 1861-1870, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34037986

RESUMEN

AIM: To evaluate the effect of excessive caffeine intake on the inflammation/resorption processes associated with periapical periodontitis (PP) in rats. METHODOLOGY: Sixteen Wistar rats were used. Periapical periodontitis was induced in the four first molars in each animal. The animals were arranged into two groups: control (C)-rats with periapical periodontitis; and caffeine (CAF)-rats with periapical periodontitis under caffeine administration protocol. The CAF animals received 10 mg/100 g of body weight/day of caffeine via gavage starting fifteen days before PP induction and continuing for thirty more days until euthanasia. On the 30th day, the animals were euthanized and the jaws removed for microcomputed tomography, histological and immunohistochemical analysis for RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1ß. The Mann-Whitney test was performed for nonparametric data, and Student's t test was performed for parametric data, using p < .05. RESULTS: There was no significant difference in the weight change between the groups. The median score of the inflammatory process was significantly greater in the CAF group (3) compared with the C group (2), p = .0256. Bone resorption was greater in the group consuming caffeine (1.08 ± 0.15 mm3 ) compared with the C group (0.88 ± 0.10 mm3 ), p = .0346. The immunolabelling for RANKL, TRAP and IL-1ß was significantly higher in the CAF group when compared to the control, p < .05. No differences were found for the OPG, IL-10 and TNF-⍺ immunolabelling. CONCLUSION: Excessive caffeine exposure via gavage in rats was able to exacerbate the volume of periapical bone destruction, and the inflammatory pattern deriving from periapical periodontitis altering the expression of RANKL, IL-1ß and TRAP.


Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Periodontitis Periapical , Pérdida de Hueso Alveolar/diagnóstico por imagen , Animales , Cafeína/efectos adversos , Ligando RANK , Ratas , Ratas Wistar , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA