Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Photonics ; 10(10): 3691-3699, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37869556

RESUMEN

The integration of indistinguishable single photon sources in photonic circuits is a major prerequisite for on-chip quantum applications. Among the various high-quality sources, nanowire quantum dots can be efficiently coupled to optical waveguides because of their preferred emission direction along their growth direction. However, local tuning of the emission properties remains challenging. In this work, we transfer a nanowire quantum dot onto a bulk lithium niobate substrate and show that its emission can be dynamically tuned by acousto-optical coupling with surface acoustic waves. The purity of the single photon source is preserved during the strain modulation. We further demonstrate that the transduction is maintained even with a SiO2 encapsulation layer deposited on top of the nanowire acting as the cladding of a photonic circuit. Based on these experimental findings and numerical simulations, we introduce a device architecture consisting of a nanowire quantum dot efficiently coupled to a thin-film lithium niobate rib waveguide and strain-tunable by surface acoustic waves.

2.
Nano Lett ; 23(11): 5350-5357, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37224010

RESUMEN

Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate eight-mode on-demand single-photon W states, using nanowire quantum dots and a silicon nitride photonic chip. We demonstrate a reliable and scalable technique for reconstructing the W state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm. Additionally, we utilize an entanglement witness to distinguish between mixed and entangled states, thereby affirming the entangled nature of our generated state. The study provides a new imaging approach of assessing multipartite entanglement in W states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903772

RESUMEN

Controlling the morphology and composition of semiconductor nano- and micro-structures is crucial for fundamental studies and applications. Here, Si-Ge semiconductor nanostructures were fabricated using photolithographically defined micro-crucibles on Si substrates. Interestingly, the nanostructure morphology and composition of these structures are strongly dependent on the size of the liquid-vapour interface (i.e., the opening of the micro-crucible) in the CVD deposition step of Ge. In particular, Ge crystallites nucleate in micro-crucibles with larger opening sizes (3.74-4.73 µm2), while no such crystallites are found in micro-crucibles with smaller openings of 1.15 µm2. This interface area tuning also results in the formation of unique semiconductor nanostructures: lateral nano-trees (for smaller openings) and nano-rods (for larger openings). Further TEM imaging reveals that these nanostructures have an epitaxial relationship with the underlying Si substrate. This geometrical dependence on the micro-scale vapour-liquid-solid (VLS) nucleation and growth is explained within a dedicated model, where the incubation time for the VLS Ge nucleation is inversely proportional to the opening size. The geometric effect on the VLS nucleation can be used for the fine tuning of the morphology and composition of different lateral nano- and micro-structures by simply changing the area of the liquid-vapour interface.

4.
Nano Lett ; 23(3): 962-968, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706023

RESUMEN

A key resource in quantum-secured communication protocols are single photon emitters. For long-haul optical networks, it is imperative to use photons at wavelengths compatible with telecom single mode fibers. We demonstrate high purity single photon emission at 1.31 µm using deterministically positioned InP photonic waveguide nanowires containing single InAsP quantum dot-in-a-rod structures. At excitation rates that saturate the emission, we obtain a single photon collection efficiency at first lens of 27.6% and a probability of multiphoton emission of g(2)(0) = 0.021. We have also evaluated the performance of the source as a function of temperature. Multiphoton emission probability increases with temperature with values of 0.11, 0.34, and 0.57 at 77, 220 and 300 K, respectively, which is attributed to an overlap of temperature-broadened excitonic emission lines. These results are a promising step toward scalably fabricating telecom single photon emitters that operate under relaxed cooling requirements.

5.
Proc Natl Acad Sci U S A ; 119(40): e2209213119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161956

RESUMEN

We have combined ultrasensitive force-based spin detection with high-fidelity spin control to achieve NMR diffraction (NMRd) measurement of ~2 million [Formula: see text]P spins in a [Formula: see text] volume of an indium-phosphide (InP) nanowire. NMRd is a technique originally proposed for studying the structure of periodic arrangements of spins, with complete access to the spectroscopic capabilities of NMR. We describe two experiments that realize NMRd detection with subangstrom precision. In the first experiment, we encode a nanometer-scale spatial modulation of the z-axis magnetization of [Formula: see text]P spins and detect the period and position of the modulation with a precision of <0.8 Å. In the second experiment, we demonstrate an interferometric technique, utilizing NMRd, to detect an angstrom-scale displacement of the InP sample with a precision of 0.07 Å. The diffraction-based techniques developed in this work extend the Fourier-encoding capabilities of NMR to the angstrom scale and demonstrate the potential of NMRd as a tool for probing the structure and dynamics of nanocrystalline materials.

6.
Sci Rep ; 12(1): 6376, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430589

RESUMEN

We report on a platform for the production of single photon devices with a fabrication yield of 100%. The sources are based on InAsP quantum dots embedded within position-controlled bottom-up InP nanowires. Using optimized growth conditions, we produce large arrays of structures having highly uniform geometries. Collection efficiencies are as high as 83% and multiphoton emission probabilities as low as 0.6% with the distribution away from optimal values associated with the excitation of other charge complexes and re-excitation processes, respectively, inherent to the above-band excitation employed. Importantly, emission peak lineshapes have Lorentzian profiles indicating that linewidths are not limited by inhomogeneous broadening but rather pure dephasing, likely elastic carrier-phonon scattering due to a high phonon occupation. This work establishes nanowire-based devices as a viable route for the scalable fabrication of efficient single photon sources and provides a valuable resource for hybrid on-chip platforms currently being developed.

7.
Sci Rep ; 12(1): 5100, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332174

RESUMEN

We study experimentally and theoretically the in-plane magnetic field dependence of the coupling between dots forming a vertically stacked double dot molecule. The InAsP molecule is grown epitaxially in an InP nanowire and interrogated optically at millikelvin temperatures. The strength of interdot tunneling, leading to the formation of the bonding-antibonding pair of molecular orbitals, is investigated by adjusting the sample geometry. For specific geometries, we show that the interdot coupling can be controlled in-situ using a magnetic field-mediated redistribution of interdot coupling strengths. This is an important milestone in the development of qubits required in future quantum information technologies.

8.
Sci Rep ; 11(1): 22878, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819556

RESUMEN

We present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of the nanowire, coupling the light immediately into a single mode optical fibre. The system provides a stable, high brightness source of fibre-coupled single photons. Using pulsed excitation, we demonstrate on-demand operation with a single photon purity of 98.5% when exciting at saturation in a device with a source-fibre collection efficiency of 35% and an overall single photon collection efficiency of 10%. We also demonstrate "plug and play" operation using room temperature photoluminescence from the InP nanowire for room temperature alignment.

9.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062809

RESUMEN

For nanowire-based sources of non-classical light, the rate at which photons are generated and the ability to efficiently collect them are determined by the nanowire geometry. Using selective-area vapour-liquid-solid epitaxy, we show how it is possible to control the nanowire geometry and tailor it to optimise device performance. High efficiency single photon generation with negligible multi-photon emission is demonstrated using a quantum dot embedded in a nanowire having a geometry tailored to optimise both collection efficiency and emission rate.

10.
Nano Lett ; 20(5): 3688-3693, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32272017

RESUMEN

Photonics-based quantum information technologies require efficient, high emission rate sources of single photons. Position-controlled quantum dots embedded within a broadband nanowire waveguide provide a fully scalable route to fabricating highly efficient single-photon sources. However, emission rates for single-photon devices are limited by radiative recombination lifetimes. Here, we demonstrate a multiplexed single-photon source based on a multidot nanowire. Using epitaxially grown nanowires, we incorporate multiple energy-tuned dots, each optimally positioned within the nanowire waveguide, providing single photons with high efficiency. This linear scaling of the single-photon emission rate with number of emitters is demonstrated using a five-dot nanowire with an average multiphoton emission probability of <4% when excited at saturation. This represents the first ever demonstration of multiple single-photon emitters deterministically incorporated in a single photonic device and is a major step toward achieving GHz single-photon emission rates from a scalable multi-quantum-dot system.

11.
Opt Express ; 27(3): 3710-3716, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732386

RESUMEN

Integration of superconducting nanowire single-photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high-performance detectors. Here we overcome the yield limitation by controlled coupling of photonic channels to pre-selected detectors based on measuring critical current, timing resolution, and detection efficiency. As a proof of concept of our approach, we demonstrate a hybrid on-chip full-transceiver consisting of a deterministically integrated detector coupled to a selected nanowire quantum dot through a filtering circuit made of a silicon nitride waveguide and a ring resonator filter, delivering 100 dB suppression of the excitation laser. In addition, we perform extensive testing of the detectors before and after integration in the photonic circuit and show that the high performance of the superconducting nanowire detectors, including timing jitter down to 23 ± 3 ps, is maintained. Our approach is fully compatible with wafer-level automated testing in a cleanroom environment.

12.
Nanotechnology ; 30(23): 232001, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30703755

RESUMEN

Sources of quantum light that utilize photonic nanowire designs have emerged as potential candidates for high efficiency non-classical light generation in quantum information processing. In this review we cover the different platforms used to produce nanowire-based sources, highlighting the importance of waveguide design and material properties in achieving optimal performance. The limitations of the sources are identified and routes to optimization are proposed. State-of-the-art nanowire sources are compared to other solid-state quantum emitter platforms with regard to the key metrics of single photon purity, indistinguishability and entangled-pair fidelity to maximally entangled Bell states. We also discuss the unique ability of the nanowire platform to incorporate multiple emitters in the same optical mode and consider potential applications. Finally, routes to on-chip integration are discussed and the challenges facing the development of a nanowire-based scalable architecture are presented.

13.
Nano Lett ; 18(12): 7969-7976, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30474987

RESUMEN

Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner. Here we demonstrate a new class of hybrid quantum photonic circuits combining III-V semiconductors, silicon nitride, and piezoelectric crystals. Using a combination of bottom-up, top-down, and nanomanipulation techniques, we realize strain tuning of a selected, waveguide-integrated, quantum emitter and a planar integrated optical resonator. Our findings are an important step toward realizing reconfigurable quantum-integrated photonics, with full control over the quantum sources and the photonic circuit.

14.
Nano Lett ; 18(5): 3047-3052, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29616557

RESUMEN

We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

15.
Nat Commun ; 8(1): 379, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855499

RESUMEN

Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

16.
Sci Rep ; 7(1): 7751, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798408

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

17.
Nat Commun ; 8: 15716, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28604705

RESUMEN

Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices.

18.
Sci Rep ; 7(1): 1700, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490728

RESUMEN

Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.

19.
Nano Lett ; 16(4): 2289-94, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26954298

RESUMEN

A major step toward fully integrated quantum optics is the deterministic incorporation of high quality single photon sources in on-chip optical circuits. We show a novel hybrid approach in which preselected III-V single quantum dots in nanowires are transferred and integrated in silicon based photonic circuits. The quantum emitters maintain their high optical quality after integration as verified by measuring a low multiphoton probability of 0.07 ± 0.07 and emission line width as narrow as 3.45 ± 0.48 GHz. Our approach allows for optimum alignment of the quantum dot light emission to the fundamental waveguide mode resulting in very high coupling efficiencies. We estimate a coupling efficiency of 24.3 ± 1.7% from the studied single-photon source to the photonic channel and further show by finite-difference time-domain simulations that for an optimized choice of material and design the efficiency can exceed 90%.

20.
Nat Commun ; 5: 5298, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25358656

RESUMEN

A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position-controlled nanowire quantum dot with a fidelity as high as 0.859±0.006 and concurrence of 0.80±0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single-electron devices and light-emitting diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA