Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 111(4): 768-774, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27558720

RESUMEN

The fundamental backbone dynamics of unfolded proteins arising due to intrinsic ϕ-ψ dihedral angle fluctuations dictate the course of protein folding, binding, assembly, and function. These internal fluctuations are also critical for protein misfolding associated with a range of human diseases. However, direct observation and unambiguous assignment of this inherent dynamics in chemically denatured proteins is extremely challenging due to various experimental limitations. To directly map the backbone torsional mobility in the ϕ-ψ dihedral angle space, we used a model intrinsically disordered protein, namely, α-synuclein, that adopts an expanded state under native conditions. We took advantage of nonoccurrence of tryptophan in α-synuclein and created a number of single-tryptophan variants encompassing the entire polypeptide chain. We then utilized highly sensitive picosecond time-resolved fluorescence depolarization measurements that allowed us to discern the site-specific torsional relaxation at a low protein concentration under physiological conditions. For all the locations, the depolarization kinetics exhibited two well-separated rotational-correlation-time components. The shorter, subnanosecond component arises due to the local mobility of the indole side chain, whereas the longer rotational-correlation-time component (1.37 ± 0.15 ns), independent of global tumbling, represents a characteristic timescale for short-range conformational exchange in the ϕ-ψ dihedral space. This correlation time represents an intrinsic timescale for torsional relaxation and is independent of position, which is expected for an extended polypeptide chain having little or no propensity to form persistent structures. We were also able to capture this intrinsic timescale at the N-terminal unstructured domain of the prion protein. Our estimated timescale of the segmental mobility is similar to that of unfolded proteins studied by nuclear magnetic resonance in conjunction with molecular dynamics simulations. Our results have broader implications for a diverse range of functionally and pathologically important intrinsically disordered proteins and disordered regions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Movimiento , Secuencia de Aminoácidos , Humanos , Simulación de Dinámica Molecular , Conformación Proteica
2.
Chemphyschem ; 17(18): 2804-7, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27253720

RESUMEN

Conformational switching of the prion protein into the abnormal form involves the formation of (obligatory) molten-oligomers that mature into ordered amyloid fibrils. The role of water in directing the course of amyloid formation remains poorly understood. Here, we show that the mobility of the water molecules within the on-pathway oligomers is highly retarded. The water relaxation time within the oligomers was estimated to be ≈1 ns which is about three orders of magnitude slower than the bulk water and resembles the characteristics of (trapped) nano-confined water. We propose that the coalescence of these obligatory oligomers containing trapped water is entropically favored because of the release of ordered water molecules in the bulk milieu and results in the sequestration of favorable inter-chain amyloid contacts via nucleated conformational conversion. The dynamic role of water in protein aggregation will have much broader implications in a variety of protein misfolding diseases.


Asunto(s)
Amiloide/química , Proteínas Priónicas/química , Agua/química , Humanos , Modelos Moleculares , Conformación Proteica
3.
Biochemistry ; 54(51): 7505-13, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26645611

RESUMEN

Conformational switching of the prion protein (PrP) from an α-helical normal cellular form (PrP(C)) to an aggregation-prone and self-propagating ß-rich scrapie form (PrP(Sc)) underlies the molecular basis of pathogenesis in prion diseases. Anionic lipids play a critical role in the misfolding and conformational conversion of the membrane-anchored PrP into the amyloidogenic pathological form. In this work, we have used a diverse array of techniques to interrogate the early intermediates during amyloid formation from recombinant human PrP in the presence of a membrane mimetic anionic detergent such as sodium dodecyl sulfate. We have been able to detect and characterize two distinct types of interconvertible oligomers. Our results demonstrate that highly ordered large ß-oligomers represent benign off-pathway intermediates that lack the ability to mature into amyloid fibrils. On the contrary, structurally labile small oligomers are capable of switching to an ordered amyloid-state that exhibits profound toxicity to mammalian cells. Our fluorescence resonance energy transfer measurements revealed that the partially disordered PrP serves as precursors to small amyloid-competent oligomers. These on-pathway oligomers are eventually sequestered into higher order supramolecular assemblies that conformationally mature into polymorphic amyloids possessing varied nanoscale morphology as evident by the atomic force microscopy imaging. The nanoscale diversity of fibril architecture is attributed to the heterogeneous ensemble of early obligatory oligomers and offers a plausible explanation for the existence of multiple prion strains in vivo.


Asunto(s)
Amiloide/química , Biopolímeros/química , Nanoestructuras , Priones/química , Microscopía de Fuerza Atómica , Conformación Proteica , Análisis Espectral
4.
Phys Chem Chem Phys ; 17(35): 22862-71, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26264974

RESUMEN

The self-assembly of proteins triggered by a conformational switch into highly ordered ß-sheet rich amyloid fibrils has captivated burgeoning interest in recent years due to the involvement of amyloids in a variety of human diseases and a diverse range of biological functions. Here, we have investigated the mechanism of fibrillogenesis of human serum albumin (HSA), an all-α-helical protein, using an array of biophysical tools that include steady-state as well as time-resolved fluorescence, circular dichroism and Raman spectroscopy in conjunction with atomic force microscopy (AFM). Investigations into the temporal evolution of nanoscale morphology using AFM revealed the presence of ring-like intermediates that subsequently transformed into worm-like fibrils presumably by a ring-opening mechanism. Additionally, a multitude of morphologically-diverse oligomers were observed on the pathway to amyloid formation. Kinetic analysis using multiple structural probes in-tandem indicated that HSA amyloid assembly is a concerted process encompassing a major structural change that is primarily mediated by hydrophobic interactions between thermally-induced disordered segments originating in various domains. A slower growth kinetics of aggregates suggested that the protein structural reorganization is a prerequisite for fibril formation. Moreover, time-dependent Raman spectroscopic studies of HSA aggregation provided key molecular insights into the conformational transitions occurring within the protein amide backbone and at the residue-specific level. Our data revealed the emergence of conformationally-diverse disulfides as a consequence of structural reorganization and sequestration of tyrosines into the hydrophobic amyloid core comprising antiparallel cross ß-sheets.


Asunto(s)
Amiloide/química , Amiloide/síntesis química , Albúmina Sérica/química , Dicroismo Circular , Fluorescencia , Humanos , Cinética , Microscopía de Fuerza Atómica , Espectrometría Raman
5.
ACS Chem Biol ; 10(3): 813-20, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25493352

RESUMEN

Various small molecules present in biological systems can assist protein folding in vitro and are known as chemical chaperones. De novo design of chemical chaperones with higher activity than currently known examples is desirable to ameliorate protein misfolding and aggregation in multiple contexts. However, this development has been hindered by limited knowledge of their activities. It is thought that chemical chaperones are typically poor solvents for a protein backbone and hence facilitate native structure formation. However, it is unknown if different chemical chaperones can act differently to modulate folding energy landscapes. Using a model slow folding protein, double-mutant Maltose-binding protein (DM-MBP), we show that a canonical chemical chaperone, trimethylamine-N-oxide (TMAO), accelerates refolding by decreasing the flexibility of the refolding intermediate (RI). Among a number of small molecules that chaperone DM-MBP folding, proline and serine stabilize the transition state (TS) enthalpically, while trehalose behaves like TMAO and increases the rate of barrier crossing through nonenthalpic processes. We propose a two-group classification of chemical chaperones based upon their thermodynamic effect on RI and TS, which is also supported by single molecule Förster resonance energy transfer (smFRET) studies. Interestingly, for a different test protein, the molecular mechanisms of the two groups of chaperones are not conserved. This provides a glimpse into the complexity of chemical chaperoning activity of osmolytes. Future work would allow us to engineer synergism between the two classes to design more efficient chemical chaperones to ameliorate protein misfolding and aggregation problems.


Asunto(s)
Proteínas de Unión a Maltosa/química , Metilaminas/química , Prolina/química , Serina/química , Bibliotecas de Moléculas Pequeñas/química , Trehalosa/química , Bacterias/química , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/clasificación , Termodinámica
6.
Nat Chem Biol ; 8(3): 238-45, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246401

RESUMEN

Hidden genetic variations have the potential to lead to the evolution of new traits. Molecular chaperones, which assist protein folding, may conceal genetic variations in protein-coding regions. Here we investigate whether the chemical milieu of cells has the potential to alleviate intracellular protein folding, a possibility that could implicate osmolytes in concealing genetic variations. We found that the model osmolyte trimethylamine N-oxide (TMAO) can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. We show that different osmolytes buffer a unique spectrum of mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.


Asunto(s)
Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Metilaminas/farmacología , Mutación/genética , Pliegue de Proteína/efectos de los fármacos , Cinética , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de Unión a Maltosa/metabolismo , Reacción en Cadena de la Polimerasa
7.
J Phys Chem Lett ; 3(13): 1783-7, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26291859

RESUMEN

Amyloid formation is implicated in a variety of human diseases. It is important to perform high-resolution optical imaging of individual amyloid fibrils to delineate the structural basis of supramolecular protein assembly. However, amyloid fibrils do not lend themselves to the conventional microscopic resolution, which is hindered by the diffraction limit. Here we show super-resolution fluorescence imaging of fluorescently stained amyloid fibrils derived from disease-associated human ß2-microglobulin using near-field scanning fluorescence microscopy. Using this technique, we were able to resolve the fibrils that were spatially separated by ∼75 nm. We have also been able to interrogate individual fibrils in a fibril-by-fibril manner by simultaneously monitoring both nanoscale topography and fluorescence brightness along the length of the fibrils. This method holds promise to detect conformational distributions and heterogeneity that are believed to correlate with the supramolecular packing of misfolded proteins within the fibrils in a diverse conformationally enciphered prion strains and amyloid polymorphs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA