Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Access Microbiol ; 6(6)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045252

RESUMEN

Outbreaks of erysipelas, a disease caused by infection with Erysipelothrix rhusiopathiae (ER), is a re-emerging problem in cage-free laying hen flocks. The source of ER infection in hens is usually unknown and serological evidence has also indicated the presence of ER or other antigenically related bacteria in healthy flocks. The aim of the present study was to evaluate sample collection, culture methods and DNA-based methodology to detect ER and other Erysipelotrichales in samples from healthy chickens and their environment. We used samples from a research facility with conventionally reared chickens with no history of erysipelas outbreaks where hens with high titres of IgY recognising ER previously have been observed. Microbial DNA was extracted from samples either directly or after pre-culture in nonselective or ER-selective medium. Real-time PCR was used for detection of Erysipelothrix spp. and high-throughput amplicon sequencing of 16S rRNA sequencing was used for detection of Erysipelotrichales. A pilot serological analysis of some Erysipelotrichales members with IgY from unvaccinated and ER-vaccinated high-biosecurity chickens, as well as conventionally reared chickens, was also performed. All samples were negative for ER, E. tonsillarum and E. piscisicarius by PCR analysis. However, 16S rRNA community profiling indicated the presence of several Erysipelotrichales genera in both environmental samples and chicken intestinal samples, including Erysipelothrix spp. that were detected in environmental samples. Sequences from Erysipelothrix spp. were most frequently detected in samples pre-cultured in ER-selective medium. At species level the presence of Erysipelothrix anatis and/or Erysipelothrix aquatica was indicated. Serological results indicated that IgY raised to ER showed some cross-reactivity with E. anatis. Hence, environmental samples pre-cultured in selective medium and analysis by 16S rRNA sequencing proved a useful method for detection of Erysipelotrichales, including Erysipelothrix spp., in chicken flocks. The observation of such bacteria in environmental samples offers a possible explanation for the observation of high antibody titres to ER in flocks without a history of clinical erysipelas.

2.
Vet Res ; 55(1): 70, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822378

RESUMEN

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Asunto(s)
Adhesinas de Escherichia coli , Adhesión Bacteriana , Pollos , Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Enfermedades de las Aves de Corral/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Animales , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Escherichia coli/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Front Vet Sci ; 11: 1385400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846783

RESUMEN

Multiparameter flow cytometry is a routine method in immunological studies incorporated in biomedical, veterinary, agricultural, and wildlife research and routinely used in veterinary clinical laboratories. Its use in the diagnostics of poultry diseases is still limited, but due to the continuous expansion of reagents and cost reductions, this may change in the near future. Although the structure and function of the avian immune system show commonalities with mammals, at the molecular level, there is often low homology across species. The cross-reactivity of mammalian immunological reagents is therefore low, but nevertheless, the list of reagents to study chicken immune cells is increasing. Recent improvement in multicolor antibody panels for chicken cells has resulted in more detailed analysis by flow cytometry and has allowed the discovery of novel leukocyte cell subpopulations. In this article, we present an overview of the reagents and guidance needed to perform multicolor flow cytometry using chicken samples and common pitfalls to avoid.

4.
J Med Microbiol ; 72(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36748566

RESUMEN

Introduction. Coccidiosis, caused by protozoan parasites of genus Eimeria, is a disease with large impact on poultry production worldwide. It is well known that Eimeria immunity is dependent on Th1-type responses.Gap Statement. In vitro assessment of Eimeria-specific T-cell activity would therefore be a valuable research tool but has so far proven difficult to establish.Aim. The present study aimed to evaluate in vitro induced blast transformation and CD25 expression in defined chicken T-cell populations as a measure of Eimeria immunity.Methodology. Three E. tenella infection experiments were performed and PBMC and/or spleen cells were collected between 6 and 16 days after infection of chickens. Cells were stimulated in vitro with E. tenella antigens and T-cell activation was assessed by immunofluorescence labelling and flow cytometry.Results. The results consistently showed statistically significant E. tenella specific activation of TCRα/ß+T cells within a 'window' from 8 to 14 days after infection for both spleen cells and PBMC. Responding T-cells were identified as CD4+CD8-, CD4+CD8αα+ and CD4-CD8αß+ where the CD4+CD8αα+ cells generally showed the highest responses. All three of these TCRα/ßT-cell subsets showed significant E. tenella induced blast transformation and/or CD25 expression albeit not always in concert on the same days after infection indicating complex kinetics of T-cell responses. In general, responses were higher for spleen cells compared to PBMC for all responding T-cell populations.Conclusions. This methodology shows promise to study Eimeria-specific T-cells, e.g. to evaluate vaccine responses. Results indicated that a Th1-type response was induced and suggested a role for CD4+CD8αα+ cells in Eimeria immunity.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Linfocitos T , Animales , Pollos/inmunología , Coccidiosis/inmunología , Coccidiosis/veterinaria , Leucocitos Mononucleares , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/parasitología , Linfocitos T/inmunología
5.
Vet Res ; 53(1): 105, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510306

RESUMEN

Erysipelas, caused by infection with Erysipelothrix rhusiopathiae (ER) is an important emerging disease in laying hens. We have earlier observed prominent mannose-binding lectin (MBL) acute phase responses in experimentally ER infected chickens. The present study aimed to further examine immune responses to ER by using chickens selectively bred for high (L10H) and low (L10L) serum MBL levels. Chickens were infected with ER at 3 weeks of age and immune parameters and bacterial load were monitored in blood until day 18 after infection. Blood and spleen leukocytes collected on day 18 were stimulated in vitro with ER antigens and blast transformation of different T-cell populations was assessed. The ER infection gave a very varied outcome and no clear differences were observed between L10H and L10L chickens with respect to leukocyte counts, bacterial load or clinical outcome. Nonetheless, rapid innate responses, e.g., heterophilia and increased serum MBL levels were noted in bacteraemic chickens. All ER infected chickens also showed transient increased expression of mannose receptor MRC1L-B and decreased expression of major histocompatibility complex II on monocytes day 1 after infection indicating monocyte activation or relocation. In vitro ER stimulation showed antigen specific blast transformation of CD4+, TCRγ/δ-CD8αß+ and TCRγ/δ+CD8αß+ spleen cells from all infected chickens. For CD4+ and TCRγ/δ-CD8αß+ cells the proportions of blast transformed cells were significantly higher for samples from L10L chickens than those for samples from L10H chickens. This is the first observation of ER-specific T-cells in chickens and interestingly a Th1-type response comprising cytotoxic T-cells was indicated.


Asunto(s)
Infecciones por Erysipelothrix , Erysipelothrix , Enfermedades de las Aves de Corral , Animales , Femenino , Pollos , Infecciones por Erysipelothrix/microbiología , Recuento de Leucocitos/veterinaria
6.
Sci Rep ; 12(1): 9995, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705568

RESUMEN

Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Microbiota , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & control , ARN Ribosómico 16S/genética , Receptores de Antígenos de Linfocitos T , Vacunación/veterinaria
7.
Animals (Basel) ; 12(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011218

RESUMEN

Unfavorable alterations of the commensal gut microbiota and dysbacteriosis is a major health problem in the poultry industry. Understanding how dietary intervention alters the microbial ecology of broiler chickens is important for prevention strategies. A trial was conducted with 672 Ross 308 day-old male broilers fed a basic diet (no additives, control) or the basic diet supplemented with 500 mg/kg encapsulated butyrate or 68 mg/kg salinomycin. Enteric challenge was induced by inclusion of 50 g/kg rye in a grower diet and oral gavage of a 10 times overdose of a vaccine against coccidiosis. Compared to control and butyrate-supplemented birds, salinomycin supplementation alleviated growth depression. Compared to butyrate and non-supplemented control, salinomycin increased potentially beneficial Ruminococcaceae and reduced potentially pathogenic Enterobacteriaceae and counts of Lactobacillus salivarius and Clostridium perfringens. Further, salinomycin supplementation was accompanied by a pH decrease and succinic acid increase in ceca, while coated butyrate (0.5 g/kg) showed no or limited effects. Salinomycin alleviated growth depression and maintained intestinal homeostasis in the challenged broilers, while butyrate in the tested concentration showed limited effects. Thus, further investigations are required to identify optimal dietary inclusion rates for butyrate used as alternative to ionophore coccidiostats in broiler production.

8.
Planta Med ; 88(3-04): 200-217, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34359086

RESUMEN

Medicinal plants for prophylaxis and therapy of common infectious diseases in poultry have been studied for several years. The goal of this review was to systematically identify plant species and evaluate their potential in prophylaxis and therapy of common diseases in poultry caused by bacteria and gastrointestinal protozoa. The procedure followed the recommendations of the PRISMA statement and the AMSTAR measurement tool. The PICOS scheme was used to design the research questions. Two databases were consulted, and publications were manually selected, according to predefined in- and exclusion criteria. A scoring system was established to evaluate the remaining publications. Initially, 4197 identified publications were found, and 77 publications remained after manual sorting, including 38 publications with 70 experiments on bacterial infections and 39 publications with 78 experiments on gastrointestinal protozoa. In total, 83 plant species from 42 families were identified. Asteraceae and Lamiaceae were the most frequently found families with Artemisia annua being the most frequently found plant, followed by Origanum vulgare. As compared to placebo and positive or negative control groups, antimicrobial effects were found in 46 experiments, prebiotic effects in 19 experiments, and antiprotozoal effects in 47 experiments. In summary, a total of 274 positive effects predominated over 241 zero effects and 37 negative effects. Data indicate that O. vulgare, Coriandrum sativum, A. annua, and Bidens pilosa are promising plant species for prophylaxis and therapy of bacterial and protozoal diseases in poultry.


Asunto(s)
Asteraceae , Enfermedades Transmisibles , Lamiaceae , Plantas Medicinales , Animales , Humanos , Aves de Corral
9.
Cytometry A ; 101(1): 45-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33455046

RESUMEN

A comprehensive analysis of T cell activation markers in chicken is lacking. Kinetics of T cell activation markers (CD25, CD28, CD5, MHC-II, CD44, and CD45) in response to in vitro stimulation of peripheral blood mononuclear cells with concanavalin A (Con A) were evaluated between two chicken lines selected for high and low levels of mannose-binding lectin in serum (L10H and L10L, respectively) by flow cytometry. L10H chickens showed a stronger response to Con A based on the frequency of T cell blasts in both the CD4+ and CD8+ compartment. The majority of the proliferating CD4+ and CD8+ T cells expressed CD25. Proliferating T cells were seen both in the CD4+ MHC-II+/- and CD8+ MHC-II+/- population. For both CD4+ and CD8+ T cells, frequencies of CD25+ and MHC-II+ T cells were increased 24 h after stimulation. CD28+ frequencies were only increased on CD8+ T cells 48 h after stimulation. An increase in the relative surface expression based on mean fluorescence intensity (MFI) upon activation was observed for most markers except CD5. For CD4+ T cells, CD28 expression increased 24 h after stimulation whereas MHC-II expression increased after 48 h. For CD8+ T cells, a tendency toward an increase in CD25 expression was observed. CD28 expression started to increase 24 h after stimulation and only a transient peak in MHC-II expression on CD8+ T cells was observed after 24 h. CD44 and CD45 expressed on CD4+ and CD8+ T cells increased 24-72 h after stimulation. In summary, the frequency of CD25+ and MHC-II+ T cells were shown to be early markers (24 h) for in vitro activation of both CD4+ and CD8+ T cells. Frequency of CD28+ T cells was a later marker (48 h) and only for CD8+ T cells. Surface expression of all markers (MFI) increased permanently or transiently upon activation except for CD5.


Asunto(s)
Linfocitos T CD8-positivos , Pollos , Animales , Antígenos CD28 , Citometría de Flujo , Cinética , Leucocitos Mononucleares , Activación de Linfocitos
10.
BMC Vet Res ; 17(1): 111, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676514

RESUMEN

BACKGROUND: Erysipelas, caused by Erysipelothrix rhusiopathiae (ER), is an important emerging disease in free-range and organic egg-production. The aim of the present study was to assess if quantification of ER specific IgY titers may aid the understanding of erysipelas in commercial laying hens. The methodology was validated with sequentially collected sera from experimentally ER infected SPF-chickens and subsequently applied on sera from Swedish commercial laying hens collected during and after outbreaks of erysipelas or collected at slaughter from healthy hens housed in furnished cages, barn production or in organic production (with outdoor access). RESULTS: In experimentally infected SPF-chickens, titers to ER were significantly increased approximately one week after infection while IgY to ER in uninfected age-matched controls remained low. Also chickens infected with low doses of ER, not displaying clinical signs of disease and with low recovery of ER in blood samples showed high titers of IgY to ER. For laying hens during and after erysipelas outbreaks the majority of samples were considered positive for antibodies to ER with a large variation in levels of IgY titers to ER between individuals. For healthy laying hens at slaughter all samples were deemed positive for antibodies to ER. An influence of flock on levels of IgY titers to ER was observed for both healthy hens and hens during erysipelas outbreaks. For healthy laying hens at slaughter no influence of the housing systems included in the study, history of erysipelas outbreaks at the farm or vaccination on levels of IgY titers to ER was noticed. CONCLUSIONS: Taken together, these results show that high numbers of commercial laying hens showed high IgY titers to ER, comparable to those elicited by experimental ER infection, indicating that ER or bacteria that raises antibodies that cross-react with ER are common in this environment.


Asunto(s)
Infecciones por Erysipelothrix/epidemiología , Inmunoglobulinas/sangre , Enfermedades de las Aves de Corral/inmunología , Animales , Pollos , Erysipelothrix/inmunología , Erysipelothrix/aislamiento & purificación , Infecciones por Erysipelothrix/inmunología , Femenino , Vivienda para Animales , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/microbiología , Suecia/epidemiología
11.
Vet Res ; 51(1): 114, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928307

RESUMEN

Erysipelas, a disease caused by Erysipelothrix rhusiopathiae (ER), is an increasing problem in laying hens housed in cage-free systems. This study aimed to monitor immune responses during ER infection of naïve chickens and chickens vaccinated intra muscularly with a commercial inactivated ER vaccine. Chickens were infected intra muscularly with ER at 30 days of age and blood leukocyte counts, serum levels of mannose binding lectin (MBL) and ER-specific IgY were monitored until the experiment was terminated at day 15 after infection. ER was detected in blood from more chickens and at higher bacterial counts in the naïve group (day 1: 1 of 7 chickens; day 3: 6 of 6 chickens) than in the vaccinated group (day 1: 0 of 7 chickens; day 3: 1 of 6 chickens). During the acute phase of infection transient increases in circulating heterophil numbers and serum MBL levels were detected in all ER infected chickens but these responses were prolonged in chickens from the naïve group compared to vaccinated chickens. Before infection IgY titers to ER in vaccinated chickens did not differ significantly from those of naïve chickens but vaccinated chickens showed significantly increased IgY titers to ER earlier after infection compared to chickens in the naïve group. In conclusion, the ER infection elicited prompt acute innate responses in all chickens. Vaccinated chickens did not have high IgY titers to ER prior to infection but did however show lower levels of bacteraemia and their acute immune responses were of shorter duration.


Asunto(s)
Pollos , Infecciones por Erysipelothrix/inmunología , Erysipelothrix/fisiología , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Animales , Proteínas Aviares/sangre , Infecciones por Erysipelothrix/microbiología , Femenino , Inmunoglobulinas/sangre , Recuento de Leucocitos/veterinaria , Lectina de Unión a Manosa/sangre , Enfermedades de las Aves de Corral/microbiología , Organismos Libres de Patógenos Específicos
12.
Microb Genom ; 6(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32735209

RESUMEN

The disease erysipelas caused by Erysipelothrix rhusiopathiae (ER) is a major concern in pig production. In the present study the genomes of ER from pigs (n=87), wild boars (n=71) and other sources (n=85) were compared in terms of whole-genome SNP variation, accessory genome content and the presence of genetic antibiotic resistance determinants. The aim was to investigate if genetic features among ER were associated with isolate origin in order to better estimate the risk of transmission of porcine-adapted strains from wild boars to free-range pigs and to increase our understanding of the evolution of ER. Pigs and wild boars carried isolates representing all ER clades, but clade one only occurred in healthy wild boars and healthy pigs. Several accessory genes or gene variants were found to be significantly associated with the pig and wild boar hosts, with genes predicted to encode cell wall-associated or extracellular proteins overrepresented. Gene variants associated with serovar determination and capsule production in serovars known to be pathogenic for pigs were found to be significantly associated with pigs as hosts. In total, 30 % of investigated pig isolates but only 6 % of wild boar isolates carried resistance genes, most commonly tetM (tetracycline) and lsa(E) together with lnu(B) (lincosamides, pleuromutilin and streptogramin A). The incidence of variably present genes including resistance determinants was weakly linked to phylogeny, indicating that host adaptation in ER has evolved multiple times in diverse lineages mediated by recombination and the acquisition of mobile genetic elements. The presented results support the occurrence of host-adapted ER strains, but they do not indicate frequent transmission between wild boars and domestic pigs. This article contains data hosted by Microreact.


Asunto(s)
Animales Salvajes/microbiología , Farmacorresistencia Bacteriana/genética , Infecciones por Erysipelothrix/microbiología , Erysipelothrix/genética , Sus scrofa/microbiología , Animales , Adaptación al Huésped , Filogenia , Serogrupo , Porcinos
13.
Vaccines (Basel) ; 8(2)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429204

RESUMEN

Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The ß-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens.

14.
Mol Immunol ; 114: 216-225, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31386978

RESUMEN

C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.


Asunto(s)
Carbohidratos/inmunología , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Vacunas/inmunología , Secuencia de Aminoácidos , Animales , Pollos , Células Dendríticas/inmunología , Femenino , Humanos , Ligandos , Ratones , Células Mieloides/inmunología
15.
Vet Microbiol ; 234: 61-71, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31213273

RESUMEN

Anti-phage activity of serum is of importance in repeated phage therapy. Higher serum anti-phage activity has been associated with greater susceptibility of phages to neutralisation and phage therapy failure. In this study, in vivo and in vitro survivability and immunogenicity of four coliphages (TM1, TM2, TM3 and TM4) were investigated in naive chickens and chickens pre-immunised with phage TM1. Furthermore, two phages that displayed different survivability and immunogenicity (TM1 and TM3) were compared with respect to their efficacy in treating naive or pre-immunised (TM1) chickens suffering from colibacillosis. The efficacy of the treatments was evaluated based on body weight, relative organ weights, mortality, E. coli counts in the lungs as well as severity and frequency of internal organ lesions. At the end of the experiment, both naive and pre-immunised chickens treated with TM3 showed significantly lower mortality and higher body weights than untreated chickens and those treated with TM1. The same trend was observed in incidence and severity of organ lesions as well as relative spleen weight. However, naive chickens treated with TM1 also showed a shortened inflammation period as indicated by spleen weights. E. coli counts in the lungs of chicken treated with TM3 were lower than those of chickens treated with TM1 on days 3 and 10 post challenge. These data indicate that the outcome of phage therapy and the impact of serum anti-phage activity are highly phage-type dependent in broilers.


Asunto(s)
Anticuerpos Antivirales/sangre , Colifagos/inmunología , Infecciones por Escherichia coli/veterinaria , Terapia de Fagos/efectos adversos , Enfermedades de las Aves de Corral/terapia , Animales , Pollos , Escherichia coli , Infecciones por Escherichia coli/terapia , Inmunidad Humoral , Inmunización , Inmunoglobulina M/sangre , Inmunoglobulinas/sangre , Inflamación , Pulmón/microbiología , Pulmón/patología , Terapia de Fagos/métodos , Enfermedades de las Aves de Corral/microbiología , Suero , Bazo/microbiología , Bazo/patología
16.
J Med Microbiol ; 68(7): 1003-1011, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31172912

RESUMEN

PURPOSE: The present study aimed to establish pretreatment protocols as well as real-time and droplet digital polymerase chain reaction (PCR) methodologies to detect and quantify Erysipelothrix rhusiopathiae (ER) DNA in blood samples from infected chickens, as tools for routine diagnostics and monitoring of experimental infections. Chicken blood is a problematic matrix for PCR analysis because nucleated erythrocytes contribute large amounts of host DNA that inhibit amplification. METHODOLOGY: Using artificially spiked samples of fresh chicken blood, as well as blood samples from three experimental infection studies, the performance of pretreatment protocols, including choice of blood stabilization agent, centrifugation speeds and Ficoll gradient separation, was evaluated. The results were compared with those from traditional culture-based protocols combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).Results/Key findings. Simple preparations producing cell-free samples performed well on artificial spike-in samples, providing high sensitivity. However, performance was poor in clinical samples or artificial samples where the bacteria were incubated for 4 h or more in fresh blood prior to DNA extraction. In these samples, a Ficoll separation protocol that creates samples rich in lymphocytes, monocytes and thrombocytes prior to DNA extraction was far more effective. CONCLUSIONS: Our results indicate that ER bacteria undergo rapid phagocytosis in chicken blood and that analysis of a blood fraction enriched for phagocytic cells is necessary for reliable detection and quantification. The presented results explain the poor performance of PCR detection reported in previously published experimental ER infection studies, and the proposed solutions are likely to have broader implications for PCR-based veterinary diagnostics in non-mammalian host species such as poultry and fish.


Asunto(s)
Pollos/microbiología , ADN Bacteriano/genética , Infecciones por Erysipelothrix/microbiología , Erysipelothrix/genética , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/microbiología , Animales , Erysipelothrix/aislamiento & purificación , Infecciones por Erysipelothrix/diagnóstico , Eritrocitos/citología , Eritrocitos/microbiología , Reacción en Cadena de la Polimerasa/métodos
17.
Dev Comp Immunol ; 96: 93-102, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30763593

RESUMEN

Vaccination programs are implemented in poultry farms to limit outbreaks and spread of infectious bronchitis virus (IBV), which is a substantial economic burden in the poultry industry. Immune correlates, used to predict vaccine efficacy, have proved difficult to find for IBV-vaccine-induced protection. To find correlates of IBV-vaccine-induced protection, hence, we employed a flow cytometric assay to quantify peripheral leucocyte subsets and expression of cell surface markers of six different non-vaccinated and vaccinated Major Histocompatibility Complex (MHC) haplotypes. Non-vaccinated and vaccinated MHC haplotypes presented differential leucocyte composition and IBV viral load. A strong effect of MHC-B, but not vaccination, on several leucocyte subsets resulted in positive correlations with IBV viral load based on MHC haplotype ranking. In addition, a strong effect of MHC-B and vaccination on monocyte MHC-II expression showed that animals with highest monocyte MHC-II expression had weakest vaccine-induced protection. In conclusion, we found several interesting MHC-B related immune correlates of protection and that flow cytometric analysis can be employed to study correlates of IBV-vaccine-induced protection.


Asunto(s)
Pollos/virología , Infecciones por Coronavirus/prevención & control , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/administración & dosificación , Animales , Biomarcadores/sangre , Separación Celular/métodos , Pollos/inmunología , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Femenino , Citometría de Flujo/métodos , Haplotipos , Inmunogenicidad Vacunal , Leucocitos/inmunología , Leucocitos/metabolismo , Complejo Mayor de Histocompatibilidad/inmunología , Enfermedades de las Aves de Corral/sangre , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunación/métodos , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
18.
Poult Sci ; 98(2): 653-663, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289491

RESUMEN

Infections associated with avian pathogenic Escherichia coli (APEC) cause severe economic losses to the poultry industry. The study presented herein investigated the in vivo performance of a single phage with prolonged in vivo and in vitro survivability alone or in combination with 3 other selected phages in treating colibacillosis in quails. Japanese quails (N = 360) were randomly assigned to 6 treatment groups with 4 replicate pens. Birds from the control groups (groups I, II, and III) were treated with 200 µL sterile PBS (pH 7.4), 200 µL of the selected phage (1010 pfu; TM3) or a cocktail of 4 phages (TM3 plus TM1, TM2, and TM4), respectively. Groups IV, V, and VI were challenged with 200 µL E. coli (108 cfu; O78:K80 and O2:K1) and treated with i.m. injection of 200 µL sterile PBS, phage TM3, or cocktail of 4 phages, respectively. Based on the results of the present study, the total mortality rate decreased from 46.6% in the untreated E. coli-challenged group to 26.5% and 13.6% in the E. coli-challenged group treated with single phage or phage cocktail, respectively. The body weights of birds treated with the phage cocktail were higher than the body weights of untreated birds on days 7, 14, and 21 post-challenge (P < 0.05). In addition, total viable cell counts of E. coli in the lungs of birds treated with the phage cocktail were lower than those of birds treated with phage TM3 on days 3 and 10 post-challenge (P < 0.05). Moreover, the incidence and severity of lesions in lungs, heart, and liver were found to be significantly less in the E. coli- challenged group treated with the phage cocktail. In conclusion, this study indicates that a phage cocktail may be more efficient in treating colibacillosis than a single phage possibly due to a synergistic effect between the individual phages.


Asunto(s)
Colifagos/fisiología , Infecciones por Escherichia coli/veterinaria , Terapia de Fagos/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Codorniz , Animales , Escherichia coli/virología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Enfermedades de las Aves de Corral/microbiología , Distribución Aleatoria
19.
Parasitology ; 146(5): 625-633, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409239

RESUMEN

This study aimed to set up methodology to monitor parasite-specific T-cell activation in vitro using Eimeria tenella-infected chickens. A sonicated E. tenella sporozoite protein preparation was used for the activation of chicken spleen cell cultures. Proliferation assessed by 3H-thymidin incorporation or blast transformation of T-cells assessed by immunofluorescence labelling and flow cytometry were used as read-outs for activation. Results showed that E. tenella-specific proliferation was detected in cultures of spleen cells collected in a 'window' between 8 and 14 days after primary infection. However, due to high variation in proliferative responses between individuals and to high background proliferation, large numbers of observations were needed to obtain significant results. Moreover, the outcome was not improved by increasing the infection dose to chickens or by depletion of T-cell receptor (TCR) γ/δ expressing cells from cultures. An E. tenella-specific blast transformation response was observed for TCRα/ß expressing cells within the same 'window', confirming the identity of the responding cells as classic T-cells. Thus, it is possible to study the kinetics of E. tenella-specific T-cell responses in vitro. However, more in-depth phenotypic identification of the responding T-cells could improve the methodology.


Asunto(s)
Antígenos de Protozoos/farmacología , Pollos/inmunología , Coccidiosis/veterinaria , Eimeria tenella/fisiología , Enfermedades de las Aves de Corral/inmunología , Bazo/parasitología , Animales , Coccidiosis/inmunología , Activación de Linfocitos
20.
Vet Immunol Immunopathol ; 207: 53-61, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30593351

RESUMEN

Phagocytic activity of leukocytes in whole blood was assessed as a potential immune competence trait in chickens. A flow cytometry based whole blood phagocytosis (WBP) assay was set up and evaluated using blood from chickens homozygous for four different MHC haplotypes, B12, B15, B19 and B21. Fluorescent latex beads and two serotypes of fluorescently labelled heat-killed bacteria (Salmonella Infantis and Salmonella. Typhimurium) were evaluated as phagocytic targets. In addition, the opsonophagocytic potential (OPp) of individual sera from the birds was included in a phagocytosis assay using the HD11 chicken macrophage cell line. Results showed that both serotypes of bacteria but not the latex beads were effectively phagocytosed by leukocytes in the whole blood cultures. Differences were observed in the phagocytic capacity of monocytes and thrombocyte/lymphocytes, respectively between the different MHC lines. No significant differences on the OPp of serum was identified between MHC lines. In addition, for both phagocytic activity of leukocytes and OPp of serum large variations between individuals were observed within MHC haplotypes. No significant relationships were observed between the phagocytic activity of leukocytes and serum OPp or Salmonella-specific IgY levels. In conclusion, our results suggest that the WBP assay, using a no-lyse no-wash single staining method, is a rapid and convenient method to assess phagocytic functions of different leukocyte populations.


Asunto(s)
Pollos/inmunología , Citometría de Flujo/veterinaria , Leucocitos/inmunología , Fagocitosis/inmunología , Animales , Plaquetas/inmunología , Pollos/sangre , Pollos/genética , Femenino , Citometría de Flujo/métodos , Haplotipos/genética , Haplotipos/inmunología , Linfocitos/inmunología , Complejo Mayor de Histocompatibilidad/genética , Monocitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA