Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(45): 7463-7471, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940585

RESUMEN

Astrocytes are emerging as key regulators of cognitive function and behavior. This review highlights some of the latest advances in the understanding of astrocyte roles in different behavioral domains across lifespan and in disease. We address specific molecular and circuit mechanisms by which astrocytes modulate behavior, discuss their functional diversity and versatility, and highlight emerging astrocyte-targeted treatment strategies that might alleviate behavioral and cognitive dysfunction in pathologic conditions. Converging evidence across different model systems and manipulations is revealing that astrocytes regulate behavioral processes in a precise and context-dependent manner. Improved understanding of these astrocytic functions may generate new therapeutic strategies for various conditions with cognitive and behavioral impairments.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Humanos , Astrocitos/fisiología , Cognición , Disfunción Cognitiva/patología
2.
Biomedicines ; 11(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37239034

RESUMEN

Cerebral ischemia results in oxygen and glucose deprivation that most commonly occurs after a reduction or interruption in the blood supply to the brain. The consequences of cerebral ischemia are complex and involve the loss of metabolic ATP, excessive K+ and glutamate accumulation in the extracellular space, electrolyte imbalance, and brain edema formation. So far, several treatments have been proposed to alleviate ischemic damage, yet few are effective. Here, we focused on the neuroprotective role of lowering the temperature in ischemia mimicked by an episode of oxygen and glucose deprivation (OGD) in mouse cerebellar slices. Our results suggest that lowering the temperature of the extracellular 'milieu' delays both the increases in [K+]e and tissue swelling, two dreaded consequences of cerebellar ischemia. Moreover, radial glial cells (Bergmann glia) display morphological changes and membrane depolarizations that are markedly impeded by lowering the temperature. Overall, in this model of cerebellar ischemia, hypothermia reduces the deleterious homeostatic changes regulated by Bergmann glia.

3.
Biol Psychiatry ; 93(11): 966-975, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36958999

RESUMEN

BACKGROUND: Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS: We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS: We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS: Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.


Asunto(s)
Astrocitos , Dopamina , Ratones , Animales , Humanos , Astrocitos/fisiología , Aseo Animal , Sinapsis/fisiología , Corteza Prefrontal/fisiología , Mamíferos
5.
Nat Commun ; 13(1): 753, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136061

RESUMEN

Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.


Asunto(s)
Astrocitos/metabolismo , Glutamina/metabolismo , Hipocampo/fisiología , Reconocimiento en Psicología , Transmisión Sináptica , Animales , Cognición , Colorantes Fluorescentes/química , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glutamina/química , Hipocampo/citología , Microscopía Intravital , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Sondas Moleculares , Neuronas/metabolismo , Rodaminas/química , Técnicas Estereotáxicas
6.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34544751

RESUMEN

Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aß peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aß in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Plexo Coroideo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Science ; 373(6550): 77-81, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34210880

RESUMEN

Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix-degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA-guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.


Asunto(s)
Astrocitos/fisiología , Período Crítico Psicológico , Plasticidad Neuronal , Corteza Visual/crecimiento & desarrollo , Animales , Astrocitos/metabolismo , Conexina 30/metabolismo , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34083436

RESUMEN

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.


Asunto(s)
Dopamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animales , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Noqueados , Racemasas y Epimerasas/deficiencia , Racemasas y Epimerasas/genética , Receptores Dopaminérgicos/metabolismo , Esquizofrenia , Transmisión Sináptica/efectos de los fármacos
9.
Addict Biol ; 26(4): e12995, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368923

RESUMEN

Prescription stimulants, such as d-amphetamine or methylphenidate are used to treat suffering from attention-deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether other brain regions are also affected remains elusive. Here, we demonstrate that d-amphetamine and methylphenidate increase phosphorylation at Ser845 (pS845-GluA1) in the membrane fraction of mouse cerebellum homogenate. We identify Bergmann glial cells as the source of pS845-GluA1 and demonstrate a requirement for intact NE release. Consequently, d-amphetamine-induced pS845-GluA1 was prevented by ß1-adenoreceptor antagonist, whereas the blockade of DA D1 receptor had no effect. Together, these results indicate that NE regulates GluA1 phosphorylation in Bergmann glial cells in response to prescription stimulants.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cerebelo/metabolismo , Dextroanfetamina/farmacología , Metilfenidato/farmacología , Fosfotransferasas , Animales , Masculino , Ratones , Norepinefrina/metabolismo , Fosforilación , Receptores de Dopamina D1/metabolismo
10.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127471

RESUMEN

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Dopamina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Dopamina/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
11.
Nat Rev Neurosci ; 19(12): 729-743, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30401802

RESUMEN

Close structural and functional interactions of astrocytes with synapses play an important role in brain function. The repertoire of ways in which astrocytes can regulate synaptic transmission is complex so that they can both promote and dampen synaptic efficacy. Such contrasting effects raise questions regarding the determinants of these divergent astroglial functions. Recent findings provide insights into where, when and how astroglial regulation of synapses takes place by revealing major molecular and functional intrinsic heterogeneity as well as switches in astrocytes occurring during development or specific patterns of neuronal activity. Astrocytes may therefore be seen as boosters or gatekeepers of synaptic circuits depending on their intrinsic and transformative properties throughout life.


Asunto(s)
Astrocitos/fisiología , Encéfalo/citología , Red Nerviosa/fisiología , Sinapsis/fisiología , Animales , Humanos
12.
J Neurosci ; 37(37): 9064-9075, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821660

RESUMEN

Astrocytes interact dynamically with neurons by modifying synaptic activity and plasticity. This interplay occurs through a process named gliotransmission, meaning that neuroactive molecules are released by astrocytes. Acting as a gliotransmitter, D-serine, a co-agonist of the NMDA receptor at the glycine-binding site, can be released by astrocytes in a calcium [Ca2+]i-dependent manner. A typical feature of astrocytes is their high expression level of connexin43 (Cx43), a protein forming gap junction channels and hemichannels associated with dynamic neuroglial interactions. Pharmacological and genetic inhibition of Cx43 hemichannel activity reduced the amplitude of NMDA EPSCs in mouse layer 5 prefrontal cortex pyramidal neurons without affecting AMPA EPSC currents. This reduction of NMDA EPSCs was rescued by addition of D-serine in the extracellular medium. LTP of NMDA and AMPA EPSCs after high-frequency stimulation was reduced by prior inhibition of Cx43 hemichannel activity. Inactivation of D-serine synthesis within the astroglial network resulted in the reduction of NMDA EPSCs, which was rescued by adding extracellular D-serine. We showed that the activity of Cx43 hemichannels recorded in cultured astrocytes was [Ca2+]I dependent. Accordingly, in acute cortical slices, clamping [Ca2+]i at a low level in astroglial network resulted in an inhibition of NMDA EPSC potentiation that was rescued by adding extracellular D-serine. This work demonstrates that astroglial Cx43 hemichannel activity is associated with D-serine release. This process, occurring by direct permeation of D-serine through hemichannels or indirectly by Ca2+ entry and activation of other [Ca2+]i-dependent mechanisms results in the modulation of synaptic activity and plasticity.SIGNIFICANCE STATEMENT We recorded neuronal glutamatergic (NMDA and AMPA) responses in prefrontal cortex (PFC) neurons and used pharmacological and genetic interventions to block connexin-mediated hemichannel activity specifically in a glial cell population. For the first time in astrocytes, we demonstrated that hemichannel activity depends on the intracellular calcium concentration and is associated with D-serine release. Blocking hemichannel activity reduced the LTP of these excitatory synaptic currents triggered by high-frequency stimulation. These observations may be particularly relevant in the PFC, where D-serine and its converting enzyme are highly expressed.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Conexina 43/metabolismo , Ácido Glutámico/metabolismo , Corteza Prefrontal/fisiología , Serina/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neurotransmisores/metabolismo
13.
Sci Rep ; 7(1): 5496, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710408

RESUMEN

Epilepsy is a neurological condition that affects 1% of the world population. Conventional treatments of epilepsy use drugs targeting neuronal excitability, inhibitory or excitatory transmission. Yet, one third of patients presents an intractable form of epilepsy and fails to respond to pharmacological anti-epileptic strategies. The ketogenic diet is a well-established non-pharmacological treatment that has been proven to be effective in reducing seizure frequency in the pharmaco-resistant patients. This dietary solution is however extremely restrictive and can be associated with complications caused by the high [fat]:[carbohydrate + protein] ratio. Recent advances suggest that the traditional 4:1 ratio of the ketogenic diet is not a requisite for its therapeutic effect. We show here that combining nutritional strategies targeting specific amino-acids, carbohydrates and fatty acids with a low [fat]:[proteins + carbohydrates] ratio also reduces excitatory drive and protects against seizures to the same extent as the ketogenic diet. Similarly, the morphological and molecular correlates of temporal lobe seizures were reduced in animals fed with the combined diet. These results provide evidence that low-fat dietary strategies more palatable than the ketogenic diet could be useful in epilepsy.


Asunto(s)
Dieta Cetogénica , Fenómenos Fisiológicos de la Nutrición , Convulsiones/prevención & control , Enfermedad Aguda , Animales , Enfermedad Crónica , Masculino , Ratones Endogámicos C57BL , Convulsiones/fisiopatología , Transmisión Sináptica
14.
Nat Commun ; 8: 13920, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067224

RESUMEN

Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS-US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3-6 Hz). Strikingly, we also show that a change to the CS-US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Cuerpo Estriado/fisiología , Plasticidad Neuronal/fisiología , Percepción del Tiempo/fisiología , Amígdala del Cerebelo/anatomía & histología , Animales , Cuerpo Estriado/anatomía & histología , Electrodos Implantados , Miedo/fisiología , Masculino , Memoria/fisiología , Ratas , Ratas Sprague-Dawley , Ritmo Teta/fisiología
15.
Front Aging Neurosci ; 8: 82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148048

RESUMEN

The main energy source powering the brain is glucose. Strong energy needs of our nervous system are fulfilled by conveying this essential metabolite through blood via an extensive vascular network. Glucose then reaches brain tissues by cell uptake, diffusion and metabolization, processes primarily undertaken by astrocytes. Deprivation of glucose can however occur in various circumstances. In particular, ageing is associated with cognitive disturbances that are partly attributable to metabolic deficiency leading to brain glycopenia. Despite the crucial role of glucose and its metabolites in sustaining neuronal activity, little is known about its moment-to-moment contribution to astroglial physiology. We thus here investigated the early structural and functional alterations induced in astrocytes by a transient metabolic challenge consisting in glucose deprivation. Electrophysiological recordings of hippocampal astroglial cells of the stratum radiatum in situ revealed that shortage of glucose specifically increases astrocyte membrane capacitance, whilst it has no impact on other passive membrane properties. Consistent with this change, morphometric analysis unraveled a prompt increase in astrocyte volume upon glucose deprivation. Furthermore, characteristic functional properties of astrocytes are also affected by transient glucose deficiency. We indeed found that glucoprivation decreases their gap junction-mediated coupling, while it progressively and reversibly increases their intracellular calcium levels during the slow depression of synaptic transmission occurring simultaneously, as assessed by dual electrophysiological and calcium imaging recordings. Together, these data indicate that astrocytes rapidly respond to metabolic dysfunctions, and are therefore central to the neuroglial dialog at play in brain adaptation to glycopenia.

16.
Prog Neurobiol ; 144: 48-67, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26969413

RESUMEN

Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.


Asunto(s)
Astrocitos/fisiología , Encefalopatías/terapia , Cognición/fisiología , Disfunción Cognitiva/terapia , Animales , Encefalopatías/complicaciones , Disfunción Cognitiva/etiología , Humanos
17.
PLoS One ; 11(3): e0151233, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27003418

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.


Asunto(s)
Glicina/metabolismo , Serina/metabolismo , Transmisión Sináptica/fisiología , Corteza Visual/metabolismo , Animales , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
18.
Neuromolecular Med ; 18(1): 146-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26782175

RESUMEN

Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.


Asunto(s)
Dopamina/fisiología , Hipocampo/fisiopatología , Enfermedad de Huntington/fisiopatología , Plasticidad Neuronal , Animales , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Transgénicos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transmisión Sináptica
19.
Brain Struct Funct ; 221(5): 2427-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26026482

RESUMEN

Neuroglial interactions are now recognized as essential to brain functions. Extensive research has sought to understand the modalities of such dialog by focusing on astrocytes, the most abundant glial cell type of the central nervous system. Neuron-astrocyte exchanges occur at multiple levels, at different cellular locations. With regard to information processing, regulations occurring around synapses are of particular interest as synaptic networks are thought to underlie higher brain functions. Astrocytes morphology is tremendously complex in that their processes exceedingly branch out to eventually form multitudinous fine leaflets. The latter extremities have been shown to surround many synapses, forming perisynaptic astrocytic processes, which although recognized as essential to synaptic functioning, are poorly defined elements due to their tiny size. The current review sums up the current knowledge on their molecular and structural properties as well as the functional characteristics making them good candidates for information processing units.


Asunto(s)
Astrocitos/fisiología , Astrocitos/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Astrocitos/metabolismo , Humanos , Plasticidad Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
20.
Neurodegener Dis ; 15(2): 93-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871323

RESUMEN

BACKGROUND: Huntington's disease (HD) is a late-onset fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene coding for the protein huntingtin and is characterised by progressive motor, psychiatric and cognitive decline. We previously demonstrated that normal synaptic function in HD could be restored by application of dopamine receptor agonists, suggesting that changes in the release or bioavailability of dopamine may be a contributing factor to the disease process. OBJECTIVE: In the present study, we examined the properties of midbrain dopaminergic neurones and dopamine release in presymptomatic and symptomatic transgenic HD mice. METHODS AND RESULTS: Using intracellular sharp recordings and immunohistochemistry, we found that neuronal excitability was increased due to a loss of slow afterhyperpolarisation and that these changes were related to an apparent functional loss and abnormal distribution of SK3 channels (KCa2.3 encoded by the KCNN3 gene), a class of small-conductance calcium-activated potassium channels. Electrochemical detection of dopamine showed that this observation was associated with an enhanced dopamine release in presymptomatic transgenic mice and a drastic reduction in symptomatic animals. These changes occurred in the context of a progressive expansion in the CAG repeat number and nuclear localisation of mutant protein within the substantia nigra pars compacta. CONCLUSIONS: Dopaminergic neuronal dysfunction is a key early event in HD disease progression. The initial increase in dopamine release appears to be related to a loss of SK3 channel function, a protein containing a polyglutamine tract. Implications for polyglutamine-mediated sequestration of SK3 channels, dopamine-associated DNA damage and CAG expansion are discussed in the context of HD.


Asunto(s)
Encéfalo/patología , Neuronas Dopaminérgicas/fisiología , Enfermedad de Huntington/patología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Fenómenos Biofísicos/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Estimulación Eléctrica , Femenino , Regulación de la Expresión Génica/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Expansión de Repetición de Trinucleótido/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...