Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Theor Appl Genet ; 136(11): 235, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878079

RESUMEN

KEY MESSAGE: NIRS of wheat grains as phenomic predictors for grain yield show inflated prediction ability and are biased toward grain protein content. Estimating the breeding value of individuals using genome-wide marker data (genomic prediction) is currently one of the most important drivers of breeding progress in major crops. Recently, phenomic technologies, including remote sensing and aerial hyperspectral imaging of plant canopies, have made it feasible to predict the breeding value of individuals in the absence of genetic marker data. This is commonly referred to as phenomic prediction. Hyperspectral measurements in the form of near-infrared spectroscopy have been used since the 1980 s to predict compositional parameters of harvest products. Moreover, in recent studies NIRS from grains was used to predict grain yield. The same studies showed that phenomic prediction can outperform genomic prediction for grain yield. The genome is static and not environment dependent, thereby limiting genomic prediction ability. Gene expression is tissue specific and differs under environmental influences, leading to a tissue- and environment-specific phenome, potentially explaining the higher predictive ability of phenomic prediction. Here, we compare genomic prediction and phenomic prediction from hyperspectral measurements of wheat grains for the prediction of a variety of traits including grain yield. We show that phenomic predictions outperform genomic prediction for some traits. However, phenomic predictions are biased toward the information present in the predictor. Future studies on this topic should investigate whether population parameters are retained in phenomic prediction as they are in genomic prediction. Furthermore, we find that unbiased phenomic prediction abilities are considerably lower than previously reported and recommend a method to circumvent this issue.


Asunto(s)
Fenómica , Fitomejoramiento , Humanos , Genómica , Fenotipo , Productos Agrícolas , Grano Comestible , Triticum/genética
3.
Theor Appl Genet ; 136(1): 23, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36692839

RESUMEN

KEY MESSAGE: We used a historical dataset on stripe rust resistance across 11 years in an Austrian winter wheat breeding program to evaluate genomic and pedigree-based linear and semi-parametric prediction methods. Stripe rust (yellow rust) is an economically important foliar disease of wheat (Triticum aestivum L.) caused by the fungus Puccinia striiformis f. sp. tritici. Resistance to stripe rust is controlled by both qualitative (R-genes) and quantitative (small- to medium-effect quantitative trait loci, QTL) mechanisms. Genomic and pedigree-based prediction methods can accelerate selection for quantitative traits such as stripe rust resistance. Here we tested linear and semi-parametric models incorporating genomic, pedigree, and QTL information for cross-validated, forward, and pairwise prediction of adult plant resistance to stripe rust across 11 years (2008-2018) in an Austrian winter wheat breeding program. Semi-parametric genomic modeling had the greatest predictive ability and genetic variance overall, but differences between models were small. Including QTL as covariates improved predictive ability in some years where highly significant QTL had been detected via genome-wide association analysis. Predictive ability was moderate within years (cross-validated) but poor in cross-year frameworks.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Triticum/genética , Triticum/microbiología , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Austria , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
4.
Theor Appl Genet ; 135(9): 3103-3115, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896689

RESUMEN

KEY MESSAGE: Association mapping and phenotypic analysis of a diversity panel of 238 bread wheat accessions highlights differences in resistance against common vs. dwarf bunt and identifies genotypes valuable for bi-parental crosses. Common bunt caused by Tilletia caries and T. laevis was successfully controlled by seed dressings with systemic fungicides for decades, but has become a renewed threat to wheat yield and quality in organic agriculture where such treatments are forbidden. As the most efficient way to address this problem is the use of resistant cultivars, this study aims to broaden the spectrum of resistance sources available for breeders by identifying resistance loci against common bunt in bread wheat accessions of the USDA National Small Grains Collection. We conducted three years of artificially inoculated field trials to assess common bunt infection levels in a diversity panel comprising 238 wheat accessions for which data on resistance against the closely related pathogen Tilletia controversa causing dwarf bunt was already available. Resistance levels against common bunt were higher compared to dwarf bunt with 99 accessions showing [Formula: see text] 1% incidence. Genome-wide association mapping identified six markers significantly associated with common bunt incidence in regions already known to confer resistance on chromosomes 1A and 1B and novel loci on 2B and 7A. Our results show that resistance against common and dwarf bunt is not necessarily controlled by the same loci but we identified twenty accessions with high resistance against both diseases. These represent valuable new resources for research and breeding programs since several bunt races have already been reported to overcome known resistance genes.


Asunto(s)
Basidiomycota , Fungicidas Industriales , Pan , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Estados Unidos , United States Department of Agriculture
5.
Theor Appl Genet ; 134(9): 3111-3121, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34125246

RESUMEN

KEY MESSAGE: We combined quantitative and population genetic methods to identify loci under selection for adult plant resistance to stripe rust in an Austrian winter wheat breeding population from 2008 to 2018. Resistance to stripe rust, a foliar disease caused by the fungus P. striiformis f. sp. tritici, in wheat (Triticum aestivum L.) is both qualitatively and quantitatively controlled. Resistance genes confer complete, race-specific resistance but are easily overcome by evolving pathogen populations, while quantitative resistance is controlled by many small- to medium-effect loci that provide incomplete yet more durable protection. Data on resistance loci can be applied in marker-assisted selection and genomic prediction frameworks. We employed genome-wide association to detect loci associated with stripe rust and selection testing to identify regions of the genome that underwent selection for stripe rust resistance in an Austrian winter wheat breeding program from 2008 to 2018. Genome-wide association mapping identified 150 resistance loci, 62 of which showed significant evidence of selection over time. The breeding population also demonstrated selection for resistance at the genome-wide level.


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Selección Genética , Triticum/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genética de Población , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/crecimiento & desarrollo , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...