Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13436, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596382

RESUMEN

Current advances in epilepsy treatment aim to personalize and responsively adjust treatment parameters to overcome patient heterogeneity in treatment efficiency. For tailoring treatment to the individual and the current brain state, tools are required that help to identify the patient- and time-point-specific parameters of epilepsy. Computational modeling has long proven its utility in gaining mechanistic insight. Recently, the technique has been introduced as a diagnostic tool to predict individual treatment outcomes. In this article, the Wendling model, an established computational model of epilepsy dynamics, is used to automatically classify epileptic brain states in intracranial EEG from patients (n = 4) and local field potential recordings from in vitro rat data (high-potassium model of epilepsy, n = 3). Five-second signal segments are classified to four types of brain state in epilepsy (interictal, preonset, onset, ictal) by comparing a vector of signal features for each data segment to four prototypical feature vectors obtained by Wendling model simulations. The classification result is validated against expert visual assessment. Model-driven brain state classification achieved a classification performance significantly above chance level (mean sensitivity 0.99 on model data, 0.77 on rat data, 0.56 on human data in a four-way classification task). Model-driven prototypes showed similarity with data-driven prototypes, which we obtained from real data for rats and humans. Our results indicate similar electrophysiological patterns of epileptic states in the human brain and the animal model that are well-reproduced by the computational model, and captured by a key set of signal features, enabling fully automated and unsupervised brain state classification in epilepsy.


Asunto(s)
Encéfalo , Epilepsia , Humanos , Animales , Ratas , Simulación por Computador , Electrofisiología Cardíaca , Electrocorticografía
2.
Epilepsia ; 64(9): 2221-2238, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340565

RESUMEN

Epilepsy is a common neurological disorder, with one third of patients not responding to currently available antiepileptic drugs. The proportion of pharmacoresistant epilepsies has remained unchanged for many decades. To cure epilepsy and control seizures requires a paradigm shift in the development of new approaches to epilepsy diagnosis and treatment. Contemporary medicine has benefited from the exponential growth of computational modeling, and the application of network dynamics theory to understanding and treating human brain disorders. In epilepsy, the introduction of these approaches has led to personalized epileptic network modeling that can explore the patient's seizure genesis and predict the functional impact of resection on its individual network's propensity to seize. The application of the dynamic systems approach to neurostimulation therapy of epilepsy allows designing stimulation strategies that consider the patient's seizure dynamics and long-term fluctuations in the stability of their epileptic networks. In this article, we review, in a nontechnical fashion suitable for a broad neuroscientific audience, recent progress in personalized dynamic brain network modeling that is shaping the future approach to the diagnosis and treatment of epilepsy.


Asunto(s)
Epilepsia , Humanos , Epilepsia/terapia , Epilepsia/tratamiento farmacológico , Encéfalo , Anticonvulsivantes/uso terapéutico , Convulsiones
3.
Brain Topogr ; 33(2): 191-207, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31974733

RESUMEN

Studies examining event-related potentials (ERP) in patients affected by attention deficit/hyperactivity disorder (ADHD) have found considerable evidence of reduced target P300 amplitude across different perceptual modalities. P300 amplitude has been related to attention-driven context comparison and resource allocation processes. Altered P300 amplitude in ADHD can be reasonably assumed to be related to ADHD typical cognitive performance deficits. Transcranial alternating current stimulation (tACS) can increase the amplitude of endogenous brain oscillations. Because ERP components can be viewed as event-related oscillations (EROs), with P300 translating into the delta (0-4 Hz) and theta (4-8 Hz) frequency range, an increase of delta and theta ERO amplitudes by tACS should result in an increase of P300 amplitudes in ADHD patients. In this pilot study, 18 adult ADHD patients (7 female) performed three consecutive blocks of a visual oddball task while the electroencephalogram (EEG) was recorded. Patients received either 20 min of tACS or sham stimulation at a stimulation intensity of 1 mA. Individual stimulation frequency was determined using a time-frequency decomposition of the P300. Our preliminary results demonstrate a significant increase in P300 amplitude in the stimulation group which was accompanied by a decrease in omission errors pre-to-post tACS. However, studies including larger sample sizes are advised.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Encéfalo/fisiología , Potenciales Relacionados con Evento P300 , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Proyectos Piloto
4.
Front Psychol ; 10: 476, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30890990

RESUMEN

The P300 component of the event-related potential (ERP) is a well investigated phenomenon in the human electroencephalogram (EEG) and has been related to stimulus processing and attentional mechanisms. Event-related oscillations (ERO) represent a potential mechanism responsible for generating the ERP. In particular, oscillatory activity in the delta and theta frequency range has been associated with the generation of the P300 component. Transcranial Alternating Current Stimulation (tACS) is capable of modulating oscillatory brain activity in a frequency-specific manner. In this study, we aimed to modulate P300 amplitude using tACS by stimulating the individual ERO involved in the generation of the P300 component. TACS was applied precisely in time to the target P300 occurring in a visual oddball task. In order to achieve an appropriate current distribution, we designed an electrode configuration consisting of two clusters of stimulation electrodes on central-parietal locations. We could not demonstrate a group difference in P300 amplitude after applying tACS in the stimulation condition (N = 17) vs. the sham condition (N = 11). TACS condition and sham condition did not differ regarding their reaction times in response to target stimuli or their event-related spectral perturbation (ERSP) at stimulation frequency. Although a significant influence of stimulation could not yet be revealed on a statistical level, we suggest that the proposed method of using tACS for modulating EROs merits further investigation. Modulation of the P300 component in the ERP could help to gain further insights in the role of EROs generating ERPs and the functional relevance of the P300 component. In this study, we propose a novel approach of applying tACS and provide advice on using tACS for the modulation of EROs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...