Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Toxicol ; 4: 881622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238601

RESUMEN

Persistent organic pollutants (POPs) are ubiquitous in the environment, which is of concern since they are broadly toxic for wildlife and human health. It is generally accepted that maternal prenatal folic acid supplementation (FA) may beneficially impact offspring development, but it has been recently shown that the father's exposures also influence the health of his offspring. Bone is an endocrine organ essential for whole-body homeostasis and is susceptible to toxicants. Herein, we tested the hypotheses that prenatal paternal exposure to POPs induces developmental bone disorders in fetuses across multiple generations and that FA supplementation attenuates these disorders. We used a four-generation rat model, in which F0 founder females were divided into four treatment groups. F0 females were gavaged with corn oil or an environmentally-relevant POPs mixture and fed either a control diet (2 mg FA/kg), or FA supplemented diet (6 mg FA/kg) before mating and until parturition (four treatments in total). After the birth of the F1 litters, all F0 females and subsequent generations received the FA control diet. Staining with alcian blue and alizarin red S of male and female fetal skeletons was performed at Gestational Day 19.5. Paternal direct and ancestral exposure to POPs delayed bone ossification and decreased the length of long limb bones in fetuses. Maternal FA supplementation did not counteract the POPs-associated delayed fetal ossification and reduced long bone length. In conclusion, prenatal paternal POPs exposure causes developmental bone abnormalities over multiple generations, which were not corrected by maternal FA supplementation.

2.
Epigenomes ; 5(2)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968297

RESUMEN

Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved.

3.
Environ Sci Technol ; 54(18): 11365-11375, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32808525

RESUMEN

Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Ursidae , Tejido Adiposo/química , Animales , Contaminantes Ambientales/análisis , Femenino , Humanos , Madres , Noruega , Svalbard , Transcriptoma , Ursidae/genética
4.
Anim Reprod Sci ; 220: 106503, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32536524

RESUMEN

In light of the relatively ignored role of paternal influences on offspring development and increasing societal concerns regarding possible health consequences of chemical exposures, our team has addressed the overall hypothesis that environmentally-relevant levels of contaminants have long-lasting effects that are transmitted through the paternal lineage. This review focuses on our research examining the impact of developmental exposure to toxicants and nutrients on the phenotype and epigenome of the male and of his subsequent generations. This report is intended to encourage animal andrologists as well as the domestic animal production industry to increase their consideration of the sire's environment in the context of agricultural productivity.


Asunto(s)
Animales Domésticos/fisiología , Ambiente , Epigenoma/efectos de los fármacos , Sustancias Peligrosas/efectos adversos , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Animales Domésticos/genética , Femenino , Masculino , Contaminantes Orgánicos Persistentes/efectos adversos , Fenotipo , Reproducción/efectos de los fármacos
5.
J Dev Orig Health Dis ; 11(4): 427-437, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525320

RESUMEN

Prenatal exposure to persistent organic pollutants (POPs) has been associated with the development of metabolic syndrome-related diseases in offspring. According to epidemiological studies, father's transmission of environmental effects in addition to mother's can influence offspring health. Moreover, maternal prenatal dietary folic acid (FA) may beneficially impact offspring health. The objective is to investigate whether prenatal FA supplementation can overcome the deleterious effects of prenatal exposure to POPs on lipid homeostasis and inflammation in three generations of male rat descendants through the paternal lineage. Female Sprague-Dawley rats (F0) were exposed to a POPs mixture (or corn oil) +/- FA supplementation for 9 weeks before and during gestation. F1 and F2 males were mated with untreated females. Plasma and hepatic lipids were measured in F1, F2, and F3 males after 12-h fast. Gene expression of inflammatory cytokines was determined by qPCR in epididymal adipose tissue. In F1 males, prenatal POPs exposure increased plasma lipids at 14 weeks old and hepatic lipids at 28 weeks old and prenatal FA supplementation decreased plasma total cholesterol at 14 weeks old. Prenatal POPs exposure decreased plasma triglycerides at 14 weeks old in F2 males. No change was observed in inflammatory markers. Our results show an impact of the paternal lineage on lipid homeostasis in rats up to the F2 male generation. FA supplementation of the F0 diet, regardless of POPs exposure, lowered plasma cholesterol in F1 males but failed to attenuate the deleterious effects of prenatal POPs exposure on plasma and hepatic lipids in F1 males.


Asunto(s)
Suplementos Dietéticos , Contaminantes Ambientales/toxicidad , Ácido Fólico/administración & dosificación , Inflamación/patología , Lípidos/análisis , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Animales Recién Nacidos , Femenino , Homeostasis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
6.
Sci Rep ; 9(1): 13829, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554827

RESUMEN

The paternal environment is thought to influence sperm quality and future progeny may also be impacted. We hypothesized that prenatal exposure to environmentally-relevant contaminants impairs male reproduction, altering embryo gene expression over multiple generations. Folic acid (FA) can improve sperm quality and pregnancy outcomes, thus we further hypothesized that FA mitigates the contaminants. Sprague-Dawley F0 female rats treated with persistent organic pollutants (POPs) or corn oil and fed basal or supplemented FA diets, then used to yield four generations of litters. Only F0 females received POPs and/or FA treatments. In utero POPs exposure altered sperm parameters in F1, which were partly rescued by FA supplementation. Paternal exposure to POPs reduced sperm quality in F2 males, and the fertility of F3 males was modified by both POPs and FA. Ancestral FA supplementation improved sperm parameters of F4 males, while the POPs effect diminished. Intriguingly, F3 males had the poorest pregnancy outcomes and generated the embryos with the most significantly differentially expressed genes. Early-life exposure to POPs harms male reproduction across multiple generations. FA supplementation partly mitigated the impact of POPs. The two-cell embryo transcriptome is susceptible to paternal environment and could be the foundation for later pregnancy outcomes.


Asunto(s)
Contaminación Ambiental/efectos adversos , Ácido Fólico/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/dietoterapia , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Ácido Fólico/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Exposición Paterna/efectos adversos , Embarazo , Ratas , Ratas Sprague-Dawley
8.
Nucleic Acids Res ; 46(14): e85, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29750268

RESUMEN

High-throughput methylation sequencing enables genome-wide detection of differentially methylated sites (DMS) or regions (DMR). Increasing evidence suggests that treatment-induced DMS can be transmitted across generations, but the analysis of induced methylation changes across multiple generations is complicated by the lack of sound statistical methods to evaluate significance levels. Due to software design, DMS detection was usually made on each generation separately, thus disregarding stochastic effects expected when a large number of DMS is detected in each generation. Here, we present a novel method based on Monte Carlo sampling, methylInheritance, to evaluate that the number of conserved DMS between several generations is associated to an effect inherited from a treatment and not randomness. Moreover, we developed an inheritance simulation package, methInheritSim, to demonstrate the performance of the methylInheritance method and to evaluate the power of different experimental designs. Finally, we applied methylInheritance to a DNA methylation dataset obtained from early-life persistent organic pollutants (POPs) exposed Sprague-Dawley female rats and their descendants through a paternal transmission. The results show that metylInheritance can efficiently identify treatment-induced inherited methylation changes. Specifically, we identified two intergenerationally conserved DMS at transcription start site (TSS); one of those persisted transgenerationally. Three transgenerationally conserved DMR were found at intra or integenic regions.


Asunto(s)
Metilación de ADN , Patrón de Herencia , Animales , Simulación por Computador , Contaminantes Ambientales , Epigénesis Genética , Femenino , Masculino , Modelos Genéticos , Método de Montecarlo , Ratas Sprague-Dawley
9.
Toxicol Pathol ; 46(2): 158-168, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29400254

RESUMEN

Histological examination of the rat placenta and fetus is uncommon. Toxicological studies mainly rely on gross examination of the fetus and on fetal and placental weights. These are often insufficient to assess the fetal and placental toxicity of xenobiotics. The small size of the fetus makes its dissection labor-intensive. Thus, our objective was to develop a simple and accurate technique to evaluate the rat fetus and placenta. Sprague-Dawley rat fetuses at gestational day 19.5 ( n = 18) and their placentas ( n = 32) were fixed in formalin. Placentas were cut transversally in the center. Fetuses were cut following a freehand whole-body serial sectioning diagram adapted from Wilson's method. Sections were stained with hematoxylin-eosin-phloxine-saffron, and histomorphometry was used to measure the area of the fetal placental region (27.2 ± 1.7 mm2), including the labyrinth (22.2 ± 1.0 mm2) and the basal zone (4.8 ± 0.8 mm2). Our whole-fetus serial sectioning technique resulted in 12 precise cutting planes that fit on 3 histological slides, enabling the examination of most organs without labor-intensive dissection. Quantitative analysis of placental areas improves the understanding of the pathogenesis of treatment-related changes. This technique provides a standardized method for future research in pertinent fields such as developmental biology and toxicology.


Asunto(s)
Feto/anatomía & histología , Técnicas de Preparación Histocitológica , Placenta/anatomía & histología , Animales , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley
10.
Oncotarget ; 7(15): 19693-708, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26930713

RESUMEN

Histone lysine acetylation is an epigenetic mark regulated by histone acetyltransferases and histone deacetylases (HDAC) which plays an important role in tumorigenesis. In this study, we observed a strong overexpression of class IIa HDAC9, at the mRNA and protein levels, in the most aggressive human breast cancer cell lines (i.e. in basal breast cancer cells vs luminal ones or in malignant vs begnin MCF10A breast epithelial cell lines). HDAC9 overexpression was associated with higher rates of gene transcription and increased epigenetic marks on the HDAC9 promoter. Ectopic expression of HDAC9 in MCF7 luminal breast cancer cells led to an increase in cell proliferation and to a decrease in apoptosis. These effects were associated with a deregulated expression of several genes controlled by HDAC inhibitors such as CDKN1A, BAX and TNFRSF10A. Inversely, knock-down of HDAC9 expression in MDA-MB436 basal breast cancer cells reduced cell proliferation. Moreover, high HDAC9 expression decreased the efficacy of HDAC inhibitors to reduce cell proliferation and to regulate CDKN1A gene expression. Interestingly, the gene encoding the transcription factor SOX9 was identified by a global transcriptomic approach as an HDAC9 target gene. In stably transfected MCF7 cells, SOX9 silencing significantly decreased HDAC9 mitogenic activity. Finally, in a large panel of breast cancer biopsies, HDAC9 expression was significantly increased in tumors of the basal subtype, correlated with SOX9 expression and associated with poor prognosis. Altogether, these results indicate that HDAC9 is a key factor involved in mammary carcinogenesis and in the response to HDAC inhibitors.


Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Represoras/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Células MCF-7 , Microscopía Fluorescente , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo
11.
Cell Rep ; 13(3): 621-633, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26456817

RESUMEN

Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method used to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and TAL effector nucleases (TALENs) to tag endogenous genes and purified several DNA repair and chromatin-modifying holoenzymes to near homogeneity. We uncovered subunits and interactions among well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small- and large-scale explorations of protein interactions as well as the study of biochemical activities and structure-function relationships.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Proteínas de Mantenimiento de Minicromosoma/química , Proteómica/métodos , Línea Celular Tumoral , Genoma Humano , Humanos , Unión Proteica
12.
Breast Cancer Res Treat ; 149(1): 81-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25503779

RESUMEN

Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERß, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.


Asunto(s)
Ciclina D1/biosíntesis , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/biosíntesis , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Benzofuranos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Histonas/genética , Humanos , Ácidos Hidroxámicos/administración & dosificación , Indoles/administración & dosificación , Panobinostat , Receptor ErbB-2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Vorinostat , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Biol Chem ; 289(49): 33999-4012, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25336637

RESUMEN

Pontin/RUVBL1 and Reptin/RUVBL2 are DNA-dependent ATPases involved in numerous cellular processes and are essential components of chromatin remodeling complexes and transcription factor assemblies. However, their existence as monomeric and oligomeric forms with differential activity in vivo reflects their versatility. Using a biochemical approach, we have studied the role of the nucleosome core particle and histone N-terminal tail modifications in the assembly and enzymatic activities of Reptin/Pontin. We demonstrate that purified Reptin and Pontin form stable complexes with nucleosomes. The ATPase activity of Reptin/Pontin is modulated by acetylation and methylation of the histone H3 N terminus. In vivo, association of Reptin with the progesterone receptor gene promoter is concomitant with changes in H3 marks of the surrounding nucleosomes. Furthermore, the presence of H3 tail peptides regulates the monomer-oligomer transition of Reptin/Pontin. Proteins that are pulled down by monomeric Reptin/Pontin differ from those that can bind to hexamers. We propose that changes in the oligomeric status of Reptin/Pontin create a platform that brings specific cofactors close to gene promoters and loads regulatory factors to establish an active state of chromatin.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , ADN/química , ADN Helicasas/química , ADN Helicasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histonas/química , Histonas/genética , Humanos , Datos de Secuencia Molecular , Nucleosomas/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
PLoS One ; 9(6): e98930, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24911873

RESUMEN

PURPOSE: Epithelial-Mesenchymal Transition (EMT) features appear to be key events in development and progression of breast cancer. Epigenetic modifications contribute to the establishment and maintenance of cancer subclasses, as well as to the EMT process. Whether histone variants contribute to these transformations is not known. We investigated the relative expression levels of histone macroH2A1 splice variants and correlated it with breast cancer status/prognosis/types. METHODS: To detect differential expression of macroH2A1 variant mRNAs in breast cancer cells and tumor samples, we used the following databases: GEO, EMBL-EBI and publisher databases (may-august 2012). We extracted macroH2A1.1/macroH2A1 mRNA ratios and performed correlation studies on intrinsic molecular subclasses of breast cancer and on molecular characteristics of EMT. Associations between molecular and survival data were determined. RESULTS: We found increased macroH2A1.1/macroH2A1 mRNA ratios to be associated with the claudin-low intrinsic subtype in breast cancer cell lines. At the molecular level this association translates into a positive correlation between macroH2A1 ratios and molecular characteristics of the EMT process. Moreover, untreated Triple Negative Breast Cancers presenting a high macroH2A1.1 mRNA ratio exhibit a poor outcome. CONCLUSION: These results provide first evidence that macroH2A1.1 could be exploited as an actor in the maintenance of a transient cellular state in EMT progress towards metastatic development of breast tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/genética , Neoplasias de la Mama Triple Negativas/genética , Empalme Alternativo , Línea Celular Tumoral , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Humanos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/patología
15.
PLoS Genet ; 10(3): e1004187, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24625580

RESUMEN

Chromosome breakage is a major threat to genome integrity. The most accurate way to repair DNA double strand breaks (DSB) is homologous recombination (HR) with an intact copy of the broken locus. Mobility of the broken DNA has been seen to increase during the search for a donor copy. Observing chromosome dynamics during the earlier steps of HR, mainly the resection from DSB ends that generates recombinogenic single strands, requires a visualization system that does not interfere with the process, and is small relative to the few kilobases of DNA that undergo processing. Current visualization tools, based on binding of fluorescent repressor proteins to arrays of specific binding sites, have the major drawback that highly-repeated DNA and lengthy stretches of strongly bound protein can obstruct chromatin function. We have developed a new, non-intrusive method which uses protein oligomerization rather than operator multiplicity to form visible foci. By applying it to HO cleavage of the MAT locus on Saccharomyces cerevisiae chromosome III, we provide the first real-time analysis of resection in single living cells. Monitoring the dynamics of a chromatin locus next to a DSB revealed transient confinement of the damaged chromatin region during the very early steps of resection, consistent with the need to keep DNA ends in contact. Resection in a yku70 mutant began ∼ 10 min earlier than in wild type, defining this as the period of commitment to homology-dependent repair. Beyond the insights into the dynamics and mechanism of resection, our new DNA-labelling and -targeting method will be widely applicable to fine-scale analysis of genome organization, dynamics and function in normal and pathological contexts.


Asunto(s)
Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinación Homóloga/genética , Cromosomas Fúngicos/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Genoma Fúngico , Saccharomyces cerevisiae
16.
PLoS Genet ; 9(4): e1003387, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637611

RESUMEN

Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1) during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα) in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.


Asunto(s)
Ensamble y Desensamble de Cromatina , Estrógenos , Cromatina , Histonas/metabolismo , Humanos , Nucleosomas , Regiones Promotoras Genéticas , Activación Transcripcional
17.
PLoS One ; 8(1): e54102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349794

RESUMEN

Differential positioning of the histone variant H2A.Z in a p53 dependent manner was shown to regulate p21 transcription. Whether H2A.Z is involved in p21 activity in the absence of p53 is not known. The p21 gene is repressed in estrogen receptor (ER) negative cell lines that are p53-/- and hormone independent for their growth. Here we demonstrate that class I and II pan Histone deacetylase inhibitors (HDACi) induce p21 transcription and reduce cell proliferation of MDA-MB231, an ERα-negative mammary tumor cell line, in a H2A.Z dependent manner. H2A.Z is associated with the transcription start site (TSS) of the repressed p21 gene. Depleting H2A.Z did not lead to transcription of p21 but annihilated the stimulating effect of HDACi on this gene. Acetylation of H2A.Z but not of H3K9 at the p21 promoter correlated with p21 activation. We further show that HDACi treatment reduced the presence of the p400 chromatin remodeler at the p21 TSS. We propose a model in which association of p400 negatively affects p21 transcription by interfering with acetylation of H2A.Z.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Activación Transcripcional/efectos de los fármacos , Acetilación , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/metabolismo , Células HeLa , Histonas/genética , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Mutación , Panobinostat , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sitio de Iniciación de la Transcripción , Proteína p53 Supresora de Tumor/genética
18.
Cell Cycle ; 9(19): 3933-44, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20935455

RESUMEN

Oct1 is a ubiquitously expressed transcription factor that is induced in response to DNA damage to modulate gene expression. Herein, Oct1 deficient mouse embryonic fibroblasts were used as a model to study the importance of Oct1 in cellular stress response. Cells lacking Oct1 kept proliferating and bypassed the G(1) cell cycle arrest induced by glucose or amino acid starvation. Indeed, mTOR-mediated regulation of proliferation was abolished in Oct1(-/-) cells starved for glucose or amino acids and Oct1(-/-) cells were also insensitive to mTOR inhibition by rapamycin. Furthermore, in wild-type cells, Oct1 controls the transcription of the CDK inhibitor p27(Kip1) downstream of the mTOR pathway and Oct1-null cells failed to upregulate p27(Kip1) in response to rapamycin or glucose starvation. p27(Kip1) is required for rapamycin or nutrient starvation-induced G(1)-arrest, as p27(-/-) fibroblasts were largely insensitive to rapamycin treatment or glucose starvation. Thus, Oct1 appears to be a critical mediator of the growth arrest induced by mTOR inhibition via the control of p27(Kip1) expression.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fase G1/fisiología , Transportador 1 de Catión Orgánico/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Células Cultivadas , Medios de Cultivo/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Ratones , Ratones Noqueados , Transportador 1 de Catión Orgánico/genética , Sirolimus/farmacología
19.
Development ; 137(21): 3551-60, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876643

RESUMEN

Oct1 (Pou2f1) is a transcription factor of the POU-homeodomain family that is unique in being ubiquitously expressed in both embryonic and adult mouse tissues. Although its expression profile suggests a crucial role in multiple regions of the developing organism, the only essential function demonstrated so far has been the regulation of cellular response to oxidative and metabolic stress. Here, we describe a loss-of-function mouse model for Oct1 that causes early embryonic lethality, with Oct1-null embryos failing to develop beyond the early streak stage. Molecular and morphological analyses of Oct1 mutant embryos revealed a failure in the establishment of a normal maternal-embryonic interface due to reduced extra-embryonic ectoderm formation and lack of the ectoplacental cone. Oct1(-/-) blastocysts display proper segregation of trophectoderm and inner cell mass lineages. However, Oct1 loss is not compatible with trophoblast stem cell derivation. Importantly, the early gastrulation defect caused by Oct1 disruption can be rescued in a tetraploid complementation assay. Oct1 is therefore primarily required for the maintenance and differentiation of the trophoblast stem cell compartment during early post-implantation development. We present evidence that Cdx2, which is expressed at high levels in trophoblast stem cells, is a direct transcriptional target of Oct1. Our data also suggest that Oct1 is required in the embryo proper from late gastrulation stages onwards.


Asunto(s)
Desarrollo Embrionario/genética , Transportador 1 de Catión Orgánico/fisiología , Trofoblastos/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Pérdida del Embrión/genética , Embrión de Mamíferos , Femenino , Edad Gestacional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo , Embarazo , Factores de Tiempo , Trofoblastos/metabolismo
20.
PLoS One ; 5(6): e11011, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20543978

RESUMEN

Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant) block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7) the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.


Asunto(s)
Ciclo Celular , Proliferación Celular/efectos de los fármacos , Estradiol/análogos & derivados , Moduladores de los Receptores de Estrógeno/farmacología , Receptores de Estrógenos/efectos de los fármacos , Tamoxifeno/análogos & derivados , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Medios de Cultivo , Cartilla de ADN , Estradiol/farmacología , Estrógenos/fisiología , Citometría de Flujo , Fulvestrant , Humanos , Receptores de Estrógenos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...