Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 7(1): 62-9, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685139

RESUMEN

The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.


Asunto(s)
Replicación del ADN/fisiología , Proteína Fosfatasa 1/metabolismo , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
2.
Proc Natl Acad Sci U S A ; 110(39): 15842-7, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24019481

RESUMEN

Observing cellular responses to perturbations is central to generating and testing hypotheses in biology. We developed a massively parallel microchemostat array capable of growing and observing 1,152 yeast-GFP strains on the single-cell level with 20 min time resolution. We measured protein abundance and localization changes in 4,085 GFP-tagged strains in response to methyl methanesulfonate and analyzed 576 GFP strains in five additional conditions for a total of more than 10,000 unique experiments, providing a systematic view of the yeast proteome in flux. We observed that processing bodies formed rapidly and synchronously in response to UV irradiation, and in conjunction with 506 deletion-GFP strains, identified four gene disruptions leading to abnormal ribonucleotide-diphosphate reductase (Rnr4) localization. Our microchemostat platform enables the large-scale interrogation of proteomes in flux and permits the concurrent observation of protein abundance, localization, cell size, and growth parameters on the single-cell level for thousands of microbial cultures in one experiment.


Asunto(s)
Microfluídica/instrumentación , Microfluídica/métodos , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Espacio-Temporal , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Metilmetanosulfonato/farmacología , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
3.
EMBO J ; 31(1): 138-49, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21952045

RESUMEN

Telomere repeats in budding yeast are maintained at a constant average length and protected ('capped'), in part, by mechanisms involving the TG(1-3) repeat-binding protein Rap1. However, metazoan telomere repeats (T(2)AG(3)) can be maintained in yeast through a Rap1-independent mechanism. Here, we examine the dynamics of capping and telomere formation at an induced DNA double-strand break flanked by varying lengths of T(2)AG(3) repeats. We show that a 60-bp T(2)AG(3) repeat array induces a transient G2/M checkpoint arrest, but is rapidly elongated by telomerase to generate a stable T(2)AG(3)/TG(1-3) hybrid telomere. In contrast, a 230-bp T(2)AG(3) array induces neither G2/M arrest nor telomerase elongation. This capped state requires the T(2)AG(3)-binding protein Tbf1, but is independent of two Tbf1-interacting factors, Vid22 and Ygr071c. Arrays of binding sites for three other subtelomeric or Myb/SANT domain-containing proteins fail to display a similar end-protection effect, indicating that Tbf1 capping is an evolved function. Unexpectedly, we observed strong telomerase association with non-telomeric ends, whose elongation is blocked by a Mec1-dependent mechanism, apparently acting at the level of Cdc13 binding.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Repeticiones de Dinucleótido , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genética
4.
Nat Struct Mol Biol ; 18(2): 213-21, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217703

RESUMEN

Repressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast and promoting gene silencing in Saccharomyces cerevisiae, whereas it represses homology-directed recombination at telomeres in mammals. To understand how RAP1 has such diverse functions at telomeres, we solved the crystal or solution structures of the RAP1 C-terminal (RCT) domains of RAP1 from multiple organisms in complex with their respective protein-binding partners. Our analysis establishes RAP1(RCT) as an evolutionarily conserved protein-protein interaction module. In mammalian and fission yeast cells, this module interacts with TRF2 and Taz1, respectively, targeting RAP1 to chromosome ends for telomere protection. In contrast, S. cerevisiae RAP1 uses its RCT domain to recruit Sir3 to telomeres to mediate gene silencing. Together, our results show that, depending on the organism, the evolutionarily conserved RAP1 RCT motif has diverse functional roles at telomeres.


Asunto(s)
Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomycetales/química , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
5.
EMBO J ; 27(17): 2328-39, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19172739

RESUMEN

The budding yeast Cdc13, Stn1 and Ten1 (CST) proteins are proposed to function as an RPA-like complex at telomeres that protects ('caps') chromosome ends and regulates their elongation by telomerase. We show that Stn1 has a critical function in both processes through the deployment of two separable domains. The N terminus of Stn1 interacts with Ten1 and carries out its essential capping function. The C terminus of Stn1 binds both Cdc13 and Pol12, and we present genetic data indicating that the Stn1-Cdc13 interaction is required to limit continuous telomerase action. Stn1 telomere association, similar to that of Cdc13, peaks during S phase. Significantly, the magnitude of Stn1 telomere binding is independent of telomere TG tract length, suggesting that the negative effect of Stn1 on telomerase action might be regulated by a modification of CST activity or structure in cis at individual telomeres. Genetic analysis suggests that the Tell kinase exerts an effect in parallel with the Stn1 C terminus to counteract its inhibition of telomerase. These data provide new insights into the coordination of telomere capping and telomerase regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telomerasa/antagonistas & inhibidores , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Genes Fúngicos , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...