Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(683): eabo2847, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791207

RESUMEN

NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Animales , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Anticuerpos Neutralizantes , ARN Mensajero/genética , Anticuerpos Antivirales
2.
Microbiol Spectr ; 10(6): e0169522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36226962

RESUMEN

Biomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs. SARS-CoV-2 diagnosis was performed by a real-time PCR test targeting the nucleocapsid gene. PCR tests targeting SARS-CoV-2 nonstructural protein 10 (nsp10), nsp14, and envelope and three regions of the plasmid vector were performed to differentiate amplification of SARS-CoV-2 RNA from the plasmid vector's DNA. Nasal swabs from four asymptomatic coworkers with positive real-time PCR results for the SARS-CoV-2 nucleocapsid targets were negative when tested for SARS-CoV-2 nsp10, nsp14, and envelope protein. However, nucleic acids extracted from these nasal swabs amplified DNA regions of the plasmid vector used by the coworkers, including the ampicillin and neomycin/kanamycin resistance genes, the promoter-nucleocapsid junction, and unique codon-optimized regions. Nasal swabs from these individuals tested positive repeatedly, including during isolation. Longitudinal detection of plasmid DNA with SARS-CoV-2 nucleocapsid in nasal swabs suggests persistence in nasal tissues or colonizing bacteria. Nonviral plasmid vectors, while regarded as safe laboratory reagents, can interfere with molecular diagnostic tests. These reagents should be handled using proper personal protective equipment to prevent contamination of samples or laboratory personnel. IMPORTANCE Asymptomatic laboratory workers who tested positive for SARS-CoV-2 for days to months were found to harbor a laboratory plasmid vector containing SARS-CoV-2 DNA, which they had worked with in the past, in their nasal secretions. While prior studies have documented contamination of research personnel with PCR amplicons, our observation is novel, as these individuals shed the laboratory plasmid over days to months, including during isolation in their homes. This suggests that the plasmid was in their nasal tissues or that bacteria containing the plasmid had colonized their noses. While plasmids are generally safe, our detection of plasmid DNA in the nasal secretions of laboratory workers for weeks after they had stopped working with the plasmid shows the potential for these reagents to interfere with clinical tests and emphasizes that occupational exposures in the preceding months should be considered when interpreting diagnostic clinical tests.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , ARN Viral/genética , Estudios Prospectivos
3.
PLoS Pathog ; 18(7): e1010671, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35793394

RESUMEN

Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Anticuerpos Antiprotozoarios , Formación de Anticuerpos , Centro Germinal , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Protozoarias/genética
4.
J Med Primatol ; 51(5): 270-277, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841132

RESUMEN

BACKGROUND: Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging. METHODS: Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging. RESULTS: After optimization to maximize LN identification, intradermal ICG was successful in identifying 50-100% of the axillary/inguinal LN at a site. Using NIR, collection of peripheral and mesenteric LNs in obese macaques was 100% successful after traditional methods failed. Additionally, guided collection of LNs draining the site of intraepithelial or intramuscular immunization demonstrated significantly increased numbers of T follicular helper (Tfh) cells in germinal centers of draining compared to nondraining LNs. CONCLUSION: These imaging techniques optimize our ability to evaluate immune changes within LNs over time, even in obese macaques. This approach allows for targeted serial biopsies that permit confidence that draining LNs are being harvested throughout the study.


Asunto(s)
Verde de Indocianina , Ganglios Linfáticos , Animales , Ganglios Linfáticos/diagnóstico por imagen , Macaca mulatta , Obesidad
5.
NPJ Vaccines ; 7(1): 58, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618791

RESUMEN

Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have recently had encouraging success in disease reduction, this was only achieved with extremely high antibody titers and appeared less effective for a complete block of infection (i.e., sterile protection). While such disease reduction is important, these and other results indicate that strategies focusing on CSP alone may not achieve the high levels of sterile protection needed for malaria eradication. Here, we show that monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2, exhibit a range of inhibitory activity and that these mAbs may augment CSP-based protection despite conferring no sterile protection on their own. Therefore, pursuing a multivalent subunit vaccine immunization is a promising strategy for improving infection-blocking malaria vaccines.

6.
Nature ; 602(7898): 682-688, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016197

RESUMEN

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Convalecencia , Evasión Inmune/inmunología , Sueros Inmunes/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273/inmunología , Adulto , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/transmisión , Femenino , Humanos , Inmunización Secundaria , Modelos Moleculares , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
PLoS Biol ; 19(12): e3001384, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914685

RESUMEN

Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Reacciones Cruzadas , Femenino , Ratones , Ratones Endogámicos BALB C , Células Vero
8.
Elife ; 102021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34874007

RESUMEN

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Camélidos del Nuevo Mundo/inmunología , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Humanos , Masculino , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Cell Rep ; 36(5): 109489, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348141

RESUMEN

Both subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP. Unlike the canonical PyCSP repeat domain binding and neutralizing antibody (NAb) 2F6, RAM1 does not inhibit sporozoite traversal or entry of hepatocytes in vitro or infection in vivo. Although 2F6 and RAM1 bind non-overlapping regions of the CSP-repeat domain, pre-treatment with RAM1 abrogates the capacity of NAb to block sporozoite traversal and invasion in vitro. Importantly, RAM1 reduces the efficacy of the polyclonal humoral response against PyCSP in vivo. Collectively, our data provide a proof of concept that nNAbs can alter the efficacy of malaria vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Inmunidad Humoral , Estadios del Ciclo de Vida , Hígado/parasitología , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Línea Celular , Epítopos/inmunología , Femenino , Cinética , Vacunas contra la Malaria/inmunología , Ratones Endogámicos BALB C , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Vacunas Sintéticas/inmunología
10.
Sci Rep ; 11(1): 11328, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059712

RESUMEN

Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors. Here, we identified the human platelet-derived growth factor receptor ß (hPDGFRß) as one such protein receptor. Deletion constructs showed that the von Willebrand factor type A and thrombospondin repeat domains of TRAP are both required for optimal binding to hPDGFRß-expressing cells. We also demonstrate that this interaction is conserved in the human-infective parasite Plasmodium vivax, but not the rodent-infective parasite Plasmodium yoelii. We observed expression of hPDGFRß mainly in cells associated with the vasculature suggesting that TRAP:hPDGFRß interaction may play a role in the recognition of blood vessels by invading sporozoites.


Asunto(s)
Interacciones Huésped-Patógeno , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Plasmodium vivax/metabolismo , Plasmodium yoelii/metabolismo , Proteínas Protozoarias/aislamiento & purificación
11.
Cell Rep Med ; 2(4): 100253, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33842901

RESUMEN

The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , COVID-19/inmunología , Inmunoglobulina M/metabolismo , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/complicaciones , COVID-19/patología , COVID-19/virología , Femenino , Fiebre/etiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Proteínas de la Nucleocápside/inmunología , Dominios Proteicos/inmunología , Multimerización de Proteína/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Adulto Joven
12.
Cell Host Microbe ; 29(5): 752-756.e4, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33857426

RESUMEN

Latent forms of Plasmodium vivax, called hypnozoites, cause malaria relapses from the liver into the bloodstream and are a major obstacle to malaria eradication. To experimentally assess the impact of a partially protective pre-erythrocytic vaccine on reducing Plasmodium vivax relapses, we developed a liver-humanized mouse model that allows monitoring of relapses directly in the blood. We passively infused these mice with a suboptimal dose of an antibody that targets the circumsporozoite protein prior to challenge with P. vivax sporozoites. Although this regimen did not completely prevent primary infection, antibody-treated mice experienced 62% fewer relapses. The data constitute unprecedented direct experimental evidence that suboptimal efficacy of infection-blocking antibodies, while not completely preventing primary infection, has a pronounced benefit in reducing the number of relapses. These findings suggest that a partially efficacious pre-erythrocytic Plasmodium vivax vaccine can have a disproportionately high impact in positive public health outcomes.


Asunto(s)
Sangre/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Hígado/parasitología , Malaria Vivax/sangre , Ratones , Plasmodium vivax/genética , Recurrencia
13.
J Immunol ; 206(5): 999-1012, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33472907

RESUMEN

Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 µg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión/inmunología , Línea Celular , Epítopos/inmunología , Infecciones por VIH/inmunología , Humanos , Inmunización/métodos , Región Variable de Inmunoglobulina/inmunología , Macaca mulatta/inmunología , Células THP-1/inmunología , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología
14.
J Infect Dis ; 222(12): 1965-1973, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32798222

RESUMEN

We present a microsphere-based flow cytometry assay that quantifies the ability of plasma to inhibit the binding of spike protein to angiotensin-converting enzyme 2. Plasma from 22 patients who had recovered from mild coronavirus disease 2019 (COVID-19) and expressed anti-spike protein trimer immunoglobulin G inhibited angiotensin-converting enzyme 2-spike protein binding to a greater degree than controls. The degree of inhibition was correlated with anti-spike protein immunoglobulin G levels, neutralizing titers in a pseudotyped lentiviral assay, and the presence of fever during illness. This inhibition assay may be broadly useful to quantify the functional antibody response of patients recovered from COVID-19 or vaccine recipients in a cell-free assay system.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Sitios de Unión , Femenino , Células HEK293 , Humanos , Masculino , Microesferas , Persona de Mediana Edad , Plasma/inmunología , Unión Proteica , SARS-CoV-2/inmunología , Adulto Joven
15.
iScience ; 23(8): 101381, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32739836

RESUMEN

The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.

16.
PLoS One ; 15(5): e0233577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470041

RESUMEN

Development of a successful HIV vaccine is dependent upon a determination of the optimum antigen and adjuvant as well as choosing an optimal site for vaccine delivery. The site of delivery is particularly relevant as HIV transmission generally requires that the virus crosses a mucosal membrane to infect a new host. Here we undertake a pilot study comparing three vaccine delivery routes, two to the oral cavity (intraepithelial (iEp) and needle-free (NF-Injex)) as well as intramuscular (IM) delivery. These vaccinations utilized a recombinant HIV-1 Env trimer 10042.05 from an elite neutralizer, subject VC10042, that has previously induced high titers of cross-clade reactive V1V2 antibodies. The 10042.05.SOSIP fused trimer was administered with adjuvants R848 (Resiquimod), MPLA and Alhydrogel to characterize the innate cellular and anti-HIV Envelope (Env) antibody responses following the administration of the vaccine to the oral mucosa. Oral delivery of the 10042.05.SOSIP induced high titers of anti-V1V2 antibodies, which together with previous studies, indicates an immunogenic bias toward the V1V2 regions in 10042-derived Envs. Both types of oral vaccine delivery resulted in immunologic and serologic responses that were comparable to the IM delivery route. Furthermore, induction of anti-V1-V2 specific antibodies was best following iEp delivery of the oral vaccine identifying this as the optimal method to orally deliver this vaccine formulation.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Infecciones por VIH/prevención & control , VIH-1/metabolismo , Macaca mulatta/inmunología , Adyuvantes Inmunológicos , Administración Oral , Animales , Reacciones Cruzadas , Imidazoles , Macaca mulatta/virología , Proyectos Piloto , Proteínas del Envoltorio Viral/inmunología
17.
Malar J ; 17(1): 370, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333026

RESUMEN

BACKGROUND: Plasmodium vivax is the most geographically widespread of the human malaria parasites, causing 50,000 to 100,000 deaths annually. Plasmodium vivax parasites have the unique feature of forming dormant liver stages (hypnozoites) that can reactivate weeks or months after a parasite-infected mosquito bite, leading to new symptomatic blood stage infections. Efforts to eliminate P. vivax malaria likely will need to target the persistent hypnozoites in the liver. Therefore, research on P. vivax liver stages necessitates a marker for clearly distinguishing between actively replicating parasites and dormant hypnozoites. Hypnozoites possess a densely fluorescent prominence in the parasitophorous vacuole membrane (PVM) when stained with antibodies against the PVM-resident protein Upregulated in Infectious Sporozoites 4 (PvUIS4), resulting in a key feature recognizable for quantification of hypnozoites. Thus, PvUIS4 staining, in combination with the characteristic small size of the parasite, is currently the only hypnozoite-specific morphological marker available. RESULTS: Here, the generation and validation of a recombinant monoclonal antibody against PvUIS4 (α-rUIS4 mAb) is described. The variable heavy and light chain domains of an α-PvUIS4 hybridoma were cloned into murine IgG1 and IgK expression vectors. These expression plasmids were co-transfected into HEK293 cells and mature IgG was purified from culture supernatants. It is shown that the α-rUIS4 mAb binds to its target with high affinity. It reliably stains the schizont PVM and the hypnozoite-specific PVM prominence, enabling the visual differentiation of hypnozoites from replicating liver stages by immunofluorescence assays in different in vitro settings, as well as in liver sections from P. vivax infected liver-chimeric mice. The antibody functions reliably against all four parasite isolates tested and will be an important tool in the identification of the elusive hypnozoite. CONCLUSIONS: The α-rUIS4 mAb is a versatile tool for distinguishing replicating P. vivax liver stages from dormant hypnozoites, making it a valuable resource that can be deployed throughout laboratories worldwide.


Asunto(s)
Anticuerpos Antiprotozoarios/fisiología , Hígado/parasitología , Plasmodium vivax/aislamiento & purificación , Esporozoítos/inmunología , Biomarcadores/análisis
18.
Cell Microbiol ; 20(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29253313

RESUMEN

Gliding motility and cell traversal by the Plasmodium ookinete and sporozoite invasive stages allow penetration of cellular barriers to establish infection of the mosquito vector and mammalian host, respectively. Motility and traversal are not observed in red cell infectious merozoites, and we have previously classified genes that are expressed in sporozoites but not merozoites (S genes) in order to identify proteins involved in these processes. The S4 gene has been described as criticaly involved in Cell Traversal for Ookinetes and Sporozoites (CelTOS), yet knockout parasites (s4/celtos¯) do not generate robust salivary gland sporozoite numbers, precluding a thorough analysis of S4/CelTOS function during host infection. We show here that a failure of oocysts to develop or survive in the midgut contributes to the poor mosquito infection by Plasmodium yoelii (Py) s4/celtos¯ rodent malaria parasites. We rescued this phenotype by expressing S4/CelTOS under the ookinete-specific circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) promoter (S4/CelTOSCTRP ), generating robust numbers of salivary gland sporozoites lacking S4/CelTOS that were suitable for phenotypic analysis. Py S4/CelTOSCTRP sporozoites showed reduced infectivity in BALB/c mice when compared to wild-type sporozoites, although they appeared more infectious than sporozoites deficient in the related traversal protein PLP1/SPECT2 (Py plp1/spect2¯). Using in vitro assays, we substantiate the role of S4/CelTOS in sporozoite cell traversal, but also uncover a previously unappreciated role for this protein for sporozoite gliding motility.


Asunto(s)
Plasmodium yoelii/fisiología , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Animales , Movimiento Celular , Interacciones Huésped-Parásitos , Malaria/parasitología , Mosquitos Vectores , Plasmodium yoelii/genética , Proteínas Protozoarias/genética
19.
Cell Host Microbe ; 22(5): 601-614.e5, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29107642

RESUMEN

Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.


Asunto(s)
Edema Encefálico/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Malaria Cerebral/metabolismo , Proteínas de Neoplasias/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Receptores de Superficie Celular/metabolismo , Encéfalo/parasitología , Edema Encefálico/parasitología , Adhesión Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Malaria Cerebral/parasitología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/fisiopatología , Malaui , Masculino , Unión Proteica , Dominios Proteicos , Proteínas Protozoarias/metabolismo
20.
J Immunol Methods ; 448: 66-73, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28554543

RESUMEN

Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Antígenos/inmunología , Linfocitos B/inmunología , Células Clonales/inmunología , Clonación Molecular/métodos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/aislamiento & purificación , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Regiones no Traducidas 5' , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Formación de Anticuerpos , Especificidad de Anticuerpos , Antígenos/administración & dosificación , Linfocitos B/parasitología , Ligando de CD40/inmunología , Proliferación Celular , Separación Celular/métodos , Células Clonales/parasitología , Técnicas de Cocultivo , Citometría de Flujo , Células HEK293 , Humanos , Inmunización , Activación de Linfocitos , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/genética , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/administración & dosificación , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...