Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679660

RESUMEN

Recently, unmanned aerial vehicle (UAV)-oriented applications have been growing worldwide. Thus, there is a strong interest in using UAVs for applications requiring wide-area connectivity coverage. Such applications might be power line inspection, road inspection, offshore site monitoring, wind turbine inspections, and others. The utilization of cellular networks, such as the fifth-generation (5G) technology, is often considered to meet the requirement of wide-area connectivity. This study quantifies the performance of 5G-enabled UAVs when sensor data throughput requirements are within the 5G network's capability and when throughput requirements significantly exceed the capability of the 5G network, respectively. Our experimental results show that in the first case, the 5G network maintains bounded latency, and the application behaves as expected. In the latter case, the overloading of the 5G network results in increased latency, dropped packets, and overall degradation of the application performance. Our findings show that offloading processes requiring moderate sensor data rates work well, while transmitting all the raw data generated by the UAV's sensors is not possible. This study highlights and experimentally demonstrates the impact of critical parameters that affect real-life 5G-enabled UAVs that utilize the edge-offloading power of a 5G cellular network.


Asunto(s)
Mantenimiento , Tecnología , Dispositivos Aéreos No Tripulados
2.
J Cereb Blood Flow Metab ; 42(8): 1463-1477, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35209753

RESUMEN

An unbiased, automated and reliable method for analysis of brain lesions in tissue after ischemic stroke is missing. Manual infarct volumetry or by threshold-based semi-automated approaches is laborious, and biased to human error or biased by many false -positive and -negative data, respectively. Thereby, we developed a novel machine learning, atlas-based method for fully automated stroke analysis in mouse brain slices stained with 2% Triphenyltetrazolium-chloride (2% TTC), named "StrokeAnalyst", which runs on a user-friendly graphical interface. StrokeAnalyst registers subject images on a common spatial domain (a novel mouse TTC- brain atlas of 80 average mathematical images), calculates pixel-based, tissue-intensity statistics (z-scores), applies outlier-detection and machine learning (Random-Forest) models to increase accuracy of lesion detection, and produces volumetry data and detailed neuroanatomical information per lesion. We validated StrokeAnalyst in two separate experimental sets using the filament stroke model. StrokeAnalyst detects stroke lesions in a rater-independent and reproducible way, correctly detects hemispheric volumes even in presence of post-stroke edema and significantly minimizes false-positive errors compared to threshold-based approaches (false-positive rate 1.2-2.3%, p < 0.05). It can process scanner-acquired, and even smartphone-captured or pdf-retrieved images. Overall, StrokeAnalyst surpasses all previous TTC-volumetry approaches and increases quality, reproducibility and reliability of stroke detection in relevant preclinical models.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Animales , Encéfalo/patología , Aprendizaje Automático , Ratones , Reproducibilidad de los Resultados , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...