Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 120(3): 262-272, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38084908

RESUMEN

AIMS: Physiological cardiac hypertrophy occurs in response to exercise and can protect against pathological stress. In contrast, pathological hypertrophy occurs in disease and often precedes heart failure. The cardiac pathways activated in physiological and pathological hypertrophy are largely distinct. Our prior work demonstrated that miR-222 increases in exercised hearts and is required for exercise-induced cardiac hypertrophy and cardiomyogenesis. Here, we sought to define the role of miR-222 in pathological hypertrophy. METHODS AND RESULTS: We found that miR-222 also increased in pathological hypertrophy induced by pressure overload. To assess its functional significance in this setting, we generated a miR-222 gain-of-function model through cardiac-specific constitutive transgenic miR-222 expression (TgC-miR-222) and used locked nucleic acid anti-miR specific for miR-222 to inhibit its effects. Both gain- and loss-of-function models manifested normal cardiac structure and function at baseline. However, after transverse aortic constriction (TAC), miR-222 inhibition accelerated the development of pathological hypertrophy, cardiac dysfunction, and heart failure. Conversely, miR-222-overexpressing mice had less pathological hypertrophy after TAC, as well as better cardiac function and survival. We identified p53-up-regulated modulator of apoptosis, a pro-apoptotic Bcl-2 family member, and the transcription factors, Hmbox1 and nuclear factor of activated T-cells 3, as direct miR-222 targets contributing to its roles in this context. CONCLUSION: While miR-222 is necessary for physiological cardiac growth, it inhibits cardiac growth in response to pressure overload and reduces adverse remodelling and cardiac dysfunction. These findings support the model that physiological and pathological hypertrophy are fundamentally different. Further, they suggest that miR-222 may hold promise as a therapeutic target in pathological cardiac hypertrophy and heart failure.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , MicroARNs , Ratones , Animales , MicroARNs/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Corazón , Cardiopatías/patología , Miocitos Cardíacos/metabolismo , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 322(2): H234-H245, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919456

RESUMEN

Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold-stressed and must use brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as ß-adrenergic stimuli are primary drivers of not only lipolytic but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow-fed animals, which was blunted in animals fed a high-fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, whereas animals displayed less hypertrophy and a trend toward worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high-fat-fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.NEW & NOTEWORTHY Thermoneutral housing conditions cause rapid and reversible changes in mouse heart rate and blood pressure. Despite dramatic reductions in heart rate and blood pressure, thermoneutrality reduced the compensatory hypertrophic response in a pressure overload heart failure model compared with room temperature housing, and ACE inhibitors were still efficacious to prevent pressure overload-induced cardiac remodeling. The effects of thermoneutrality on heart rate and blood pressure are abrogated in the context of diet-induced obesity.


Asunto(s)
Regulación de la Temperatura Corporal , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Vivienda para Animales/normas , Animales , Enfermedades Cardiovasculares/metabolismo , Frecuencia Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL , Temperatura
4.
Aging Cell ; 19(6): e13159, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32441410

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age-related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24-30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age-related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.


Asunto(s)
Envejecimiento/genética , Ecocardiografía Doppler/métodos , Ejercicio Físico/fisiología , Insuficiencia Cardíaca/fisiopatología , Volumen Sistólico/fisiología , Animales , Humanos , Masculino , Ratones , Fenotipo
5.
Circ Res ; 127(5): 631-646, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32418505

RESUMEN

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Comunicación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcriptoma
6.
PLoS One ; 14(8): e0220717, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404087

RESUMEN

Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) and the nuclear receptor co-repressor1 (NCoR1) are paralogs and regulate nuclear receptor (NR) function through the recruitment of a multiprotein complex that includes histone deacetylase activity. Previous genetic strategies which deleted SMRT in a specific tissue or which altered the interaction between SMRT and NRs have suggested that it may regulate adiposity and insulin sensitivity. However, the full role of SMRT in adult mice has been difficult to establish because its complete deletion during embryogenesis is lethal. To elucidate the specific roles of SMRT in mouse target tissues especially in the context of thyroid hormone (TH) signaling, we used a tamoxifen-inducible post-natal disruption strategy. We found that global SMRT deletion causes dramatic obesity even though mice were fed a standard chow diet and exhibited normal food intake. This weight gain was associated with a decrease in energy expenditure. Interestingly, the deletion of SMRT had no effect on TH action in any tissue but did regulate retinoic acid receptor (RAR) function in the liver. We also demonstrate that the deletion of SMRT leads to profound hepatic steatosis in the setting of obesity. This is unlike NCoR1 deletion, which results in hepatic steatosis due to the upregulation of lipogenic gene expression. Taken together, our data demonstrate that SMRT plays a unique and CoR specific role in the regulation of body weight and has no role in TH action. This raises the possibility that additional role of CoRs besides NCoR1 and SMRT may exist to regulate TH action.


Asunto(s)
Peso Corporal/fisiología , Co-Represor 2 de Receptor Nuclear/fisiología , Hormonas Tiroideas/fisiología , Animales , Western Blotting , Colesterol/análisis , Ecocardiografía , Metabolismo Energético , Prueba de Tolerancia a la Glucosa , Lípidos/sangre , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Hormonas Tiroideas/sangre , Tirotropina/sangre , Tirotropina/fisiología , Tiroxina/sangre , Tiroxina/fisiología , Triglicéridos/análisis , Aumento de Peso/fisiología
7.
Sci Transl Med ; 11(482)2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842316

RESUMEN

Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Envejecimiento/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocardio/patología , Transducción de Señal , Activinas/sangre , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Animales , Constricción Patológica , Modelos Animales de Enfermedad , Proteínas Relacionadas con la Folistatina/metabolismo , Fragilidad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Ligandos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Presión , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Índice de Severidad de la Enfermedad , Sístole
8.
Circ Res ; 121(12): 1370-1378, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-28928113

RESUMEN

RATIONALE: Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. OBJECTIVE: To determine the mechanisms underlying cardiac substrate use during pregnancy. METHODS AND RESULTS: We use here 13C glucose, 13C lactate, and 13C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. CONCLUSIONS: Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling.


Asunto(s)
Miocardio/metabolismo , Embarazo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Pirúvico/metabolismo , Animales , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Progesterona/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
9.
Arterioscler Thromb Vasc Biol ; 36(9): 1854-67, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27386938

RESUMEN

OBJECTIVE: S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive. APPROACH AND RESULTS: Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1. CONCLUSIONS: Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferación Celular , Células Endoteliales/metabolismo , Proteínas S100/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Biología Computacional , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Silenciador del Gen , Humanos , Masculino , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Interferencia de ARN , Ratas Sprague-Dawley , Repitelización , Proteína A6 de Unión a Calcio de la Familia S100 , Proteínas S100/genética , Factor de Transcripción STAT1/genética , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sus scrofa , Factores de Tiempo , Transcriptoma , Transfección , Factor A de Crecimiento Endotelial Vascular/farmacología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología
10.
J Clin Invest ; 126(8): 2989-3005, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27348588

RESUMEN

Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Regulación de la Expresión Génica , Lentigo/metabolismo , Síndrome de Noonan/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Apoptosis , Linaje de la Célula , Modelos Animales de Enfermedad , Endocardio/metabolismo , Femenino , Heterocigoto , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal
11.
Nat Commun ; 6: 7400, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26100075

RESUMEN

In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis.


Asunto(s)
Envejecimiento/genética , Glucógeno/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Adiposidad/genética , Animales , Dieta Alta en Grasa , Endosomas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Homeostasis , Hiperlipidemias/genética , Resistencia a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal
12.
Cell Metab ; 21(4): 584-95, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863248

RESUMEN

Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart's capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotypes were identified, including HIPK1 and HMBOX1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling.


Asunto(s)
Remodelación Atrial/fisiología , Corazón/crecimiento & desarrollo , MicroARNs/metabolismo , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/fisiología , Daño por Reperfusión/terapia , Adulto , Animales , Aumento de la Célula , Proliferación Celular/fisiología , Ecocardiografía , Humanos , Inmunohistoquímica , Ratones , Microscopía Confocal , Miocitos Cardíacos/fisiología , Ratas
13.
FASEB J ; 28(10): 4408-19, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25005176

RESUMEN

Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Resistencia a la Insulina , Lipodistrofia/metabolismo , Mitocondrias/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Proteínas del Grupo de Alta Movilidad/genética , Hipertensión/genética , Hipertensión/metabolismo , Lipodistrofia/genética , Lipodistrofia/fisiopatología , Masculino , Ratones , Aumento de Peso
14.
Cardiovasc Res ; 101(1): 97-107, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24130190

RESUMEN

AIMS: Melusin is a muscle-specific chaperone protein whose expression is required for a compensatory hypertrophy response to pressure overload. Here, we evaluated the consequences of melusin overexpression in the setting of myocardial infarction (MI) using a comprehensive multicentre approach. METHODS AND RESULTS: Mice overexpressing melusin in the heart (TG) and wild-type controls (WT) were subjected to permanent LAD ligation and both the acute response (Day 3) and subsequent remodelling (2 weeks) were examined. Mortality in wild-type mice was significant between Days 3 and 7, primarily due to cardiac rupture, but melusin's overexpression strongly reduced mortality (43.2% in wild-type vs. 27.3% in melusin-TG, P = 0.005). At Day 3 after MI, a time point preceding the mortality peak, TG hearts had increased heat shock protein 70 expression, increased ERK1/2 signalling, reduced cardiomyocyte hyper-contractility and inflammatory cell infiltrates, and increased matricellular protein expression in the infarcted area. At 2 weeks after MI, melusin overexpression conferred a favourable adaptive remodelling characterized by reduced left ventricle dilatation and better preserved contractility in the presence of a comparable degree of hypertrophy. Adaptive remodelling in melusin TG mice was characterized by reduced apoptosis and fibrosis as well as increased cardiomyocyte contractility. CONCLUSIONS: Consistent with its function as a chaperone protein, melusin overexpression exerts a dual protective action following MI reducing an array of maladaptive processes. In the early phase after MI, reduced inflammation and myocyte remodelling protect against cardiac rupture. Chronically, reduced myocyte loss and matrix remodelling, with preserved myocyte contractility, confer adaptive LV remodelling.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Remodelación Ventricular , Animales , Apoptosis , Colágeno/metabolismo , Acoplamiento Excitación-Contracción , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Rotura Cardíaca/etiología , Rotura Cardíaca/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica , Infarto del Miocardio/complicaciones
15.
PLoS One ; 8(11): e80268, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265802

RESUMEN

Serum and glucocorticoid inducible kinase 1 (SGK1) plays a pivotal role in early angiogenesis during embryonic development. In this study, we sought to define the SGK1 downstream signalling pathways in the adult heart and to elucidate their role in cardiac neo-angiogenesis and wound healing after myocardial ischemia. To this end, we employed a viable SGK1 knockout mouse model generated in a 129/SvJ background. Ablation of SGK1 in these mice caused a significant decrease in phosphorylation of SGK1 target protein NDRG1, which correlated with alterations in NF-κB signalling and expression of its downstream target protein, VEGF-A. Disruption of these signalling pathways was accompanied by smaller heart and body size. Moreover, the lack of SGK1 led to defective endothelial cell (ECs) migration and tube formation in vitro, and increased scarring with decreased angiogenesis in vivo after myocardial infarct. This study underscores the importance of SGK1 signalling in cardiac neo-angiogenesis and wound healing after an ischemic insult in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Tamaño de la Célula , Modelos Animales de Enfermedad , Fibrosis , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transducción de Señal
16.
Circulation ; 126(17): 2073-83, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23008439

RESUMEN

BACKGROUND: Phosphoinositide 3-kinase γ (PI3Kγ) signaling engaged by ß-adrenergic receptors is pivotal in the regulation of myocardial contractility and remodeling. However, the role of PI3Kγ in catecholamine-induced arrhythmia is currently unknown. METHODS AND RESULTS: Mice lacking PI3Kγ (PI3Kγ(-/-)) showed runs of premature ventricular contractions on adrenergic stimulation that could be rescued by a selective ß(2)-adrenergic receptor blocker and developed sustained ventricular tachycardia after transverse aortic constriction. Consistently, fluorescence resonance energy transfer probes revealed abnormal cAMP accumulation after ß(2)-adrenergic receptor activation in PI3Kγ(-/-) cardiomyocytes that depended on the loss of the scaffold but not of the catalytic activity of PI3Kγ. Downstream from ß-adrenergic receptors, PI3Kγ was found to participate in multiprotein complexes linking protein kinase A to the activation of phosphodiesterase (PDE) 3A, PDE4A, and PDE4B but not of PDE4D. These PI3Kγ-regulated PDEs lowered cAMP and limited protein kinase A-mediated phosphorylation of L-type calcium channel (Ca(v)1.2) and phospholamban. In PI3Kγ(-/-) cardiomyocytes, Ca(v)1.2 and phospholamban were hyperphosphorylated, leading to increased Ca(2+) spark occurrence and amplitude on adrenergic stimulation. Furthermore, PI3Kγ(-/-) cardiomyocytes showed spontaneous Ca(2+) release events and developed arrhythmic calcium transients. CONCLUSIONS: PI3Kγ coordinates the coincident signaling of the major cardiac PDE3 and PDE4 isoforms, thus orchestrating a feedback loop that prevents calcium-dependent ventricular arrhythmia.


Asunto(s)
Catecolaminas/toxicidad , Fosfatidilinositol 3-Quinasa Clase Ib/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Taquicardia Ventricular/enzimología , Taquicardia Ventricular/prevención & control , Animales , Animales Recién Nacidos , Biorretroalimentación Psicológica/fisiología , Señalización del Calcio/genética , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Técnicas de Sustitución del Gen , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/enzimología
17.
Curr Heart Fail Rep ; 8(3): 168-75, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21519914

RESUMEN

Cardiac pathophysiology heavily relies on receptor-mediated signal transduction, and pharmacologic control of such biological processes has proven successful in preventing and treating multiple heart diseases. Recent progress in the study of receptor-mediated signal transduction events in the heart highlighted the role of a family of lipid kinases known as phosphoinositide 3-kinases (PI3Ks). These enzymes are involved downstream different receptors in the production of a lipid second messenger molecule (namely phosphatidylinositol (3,4,5)-trisphosphate [PIP(3)]), which mediates a large number of biological responses critical for the heart, including cardiomyocyte growth, survival, and contractility as well as cardiovascular inflammation. This review focuses on the recent advances in the understanding of PI3K function in cardiac pathophysiology obtained by studying mouse mutants for different PI3K genes and by validating the effects of PI3K pharmacologic inhibition in preclinical models of critical cardiac diseases like heart failure.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/fisiología , Animales , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/enzimología , Inflamación/fisiopatología , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Receptores Adrenérgicos beta/fisiología , Sistemas de Mensajero Secundario/fisiología
18.
Mol Cell ; 42(1): 84-95, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21474070

RESUMEN

Adrenergic stimulation of the heart engages cAMP and phosphoinositide second messenger signaling cascades. Cardiac phosphoinositide 3-kinase p110γ participates in these processes by sustaining ß-adrenergic receptor internalization through its catalytic function and by controlling phosphodiesterase 3B (PDE3B) activity via an unknown kinase-independent mechanism. We have discovered that p110γ anchors protein kinase A (PKA) through a site in its N-terminal region. Anchored PKA activates PDE3B to enhance cAMP degradation and phosphorylates p110γ to inhibit PIP(3) production. This provides local feedback control of PIP(3) and cAMP signaling events. In congestive heart failure, p110γ is upregulated and escapes PKA-mediated inhibition, contributing to a reduction in ß-adrenergic receptor density. Pharmacological inhibition of p110γ normalizes ß-adrenergic receptor density and improves contractility in failing hearts.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , ADN/genética , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Mapeo de Interacción de Proteínas , Quinoxalinas/farmacología , Receptores Adrenérgicos beta/metabolismo , Sistemas de Mensajero Secundario , Homología de Secuencia de Aminoácido , Tiazolidinedionas/farmacología
19.
Circulation ; 123(4): 391-9, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21242482

RESUMEN

BACKGROUND: Signaling from phosphoinositide 3-kinase γ (PI3Kγ) is crucial for leukocyte recruitment and inflammation but also contributes to cardiac maladaptive remodeling. To better understand the translational potential of these findings, this study investigates the role of PI3Kγ activity in pressure overload-induced heart failure, addressing the distinct contributions of bone marrow-derived and cardiac cells. METHODS AND RESULTS: After transverse aortic constriction, mice knock-in for a catalytically inactive PI3Kγ (PI3Kγ KD) showed reduced fibrosis and normalized cardiac function up to 16 weeks. Accordingly, treatment with a selective PI3Kγ inhibitor prevented transverse aortic constriction-induced fibrosis. To define the cell types involved in this protection, bone marrow chimeras, lacking kinase activity in the immune system or the heart, were studied after transverse aortic constriction. Bone marrow-derived cells from PI3Kγ KD mice were not recruited to wild-type hearts, thus preventing fibrosis and preserving diastolic function. After prolonged pressure overload, chimeras with PI3Kγ KD bone marrow-derived cells showed slower development of left ventricular dilation and higher fractional shortening than controls. Conversely, in the presence of a wild-type immune system, KD hearts displayed bone marrow-derived cell infiltration and fibrosis at early stages but reduced left ventricular dilation and preserved contractile function at later time points. CONCLUSIONS: Together, these data demonstrate that, in response to transverse aortic constriction, PI3Kγ contributes to maladaptive remodeling at multiple levels by modulating both cardiac and immune cell functions.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Insuficiencia Cardíaca/enzimología , Leucocitos/enzimología , Miocardio/enzimología , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fibrosis/genética , Técnicas de Sustitución del Gen , Corazón/fisiopatología , Insuficiencia Cardíaca/genética , Ratones , Ratones Endogámicos C57BL , Remodelación Ventricular/genética
20.
J Cardiovasc Pharmacol ; 56(6): 651-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20881611

RESUMEN

BACKGROUND: Phosphoinositide 3-kinase gamma is upregulated in the heart during acute myocardial infarction (AMI) potentially contributing to the development and maintenance of heart failure. METHODS: CD-1 male mice were randomly assigned to pharmacologic inhibition of phosphoinositide 3-kinase gamma using AS-605240 (10 mg/kg/day intraperitoneally) or vehicle (NaCl 0.9% + DMSO 25% solution) for 14 days after experimental AMI induced by surgical coronary artery ligation. Echocardiography was performed at baseline and 1, 7, 14, and 28 days after surgery to measure left ventricular dimensions and function. Infarct size was also measured at weekly intervals to evaluate for infarct resorption. RESULTS: When compared with vehicle-treated mice over the 4-week period, animals treated with AS-605240 showed a smaller increase in left ventricular cavitary dimensions, a smaller decrease in left ventricular systolic function (P < 0.05), and a significant increase in posterior wall diastolic and systolic thickness reflective of compensatory hypertrophy (P < 0.05). Initial infarct size (measured at 24 hours) was not different comparing AS-605240 (29% ± 4%) and vehicle-treated mice (31% ± 1%, P = nonsignificant). At 4 weeks after AMI, infarct size was significantly smaller in the AS-605240-treated mice (14% ± 2%) compared with vehicle-treated mice (28% ± 3%, P < 0.001), reflecting greater infarct resorption. CONCLUSIONS: Phosphoinositide 3-kinase gamma inhibition with AS-605240 after AMI leads to enhanced infarct resorption, greater compensatory hypertrophy of the nonischemic myocardium, and more favorable cardiac remodeling and function.


Asunto(s)
Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Remodelación Ventricular/efectos de los fármacos , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA