Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
2.
FEBS Lett ; 596(21): 2781-2794, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35962472

RESUMEN

The mitochondrial enzyme fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) was identified to be upregulated in breast cancer tissues. Here, we show that FAHD1 is indispensable for the survival of BT-20 cells, representing the basal breast cancer cell type. A lentiviral knock-down of FAHD1 in the breast cancer cell lines MCF-7 and BT-20 results in lower succinate dehydrogenase (complex II) activity. In luminal MCF-7 cells, this leads to reduced proliferation when cultured in medium containing only glutamine as the carbon source. Of note, both cell lines show attenuated protein levels of the enzyme glutaminase (GLS) which activates programmed cell death in BT-20. These findings demonstrate that FAHD1 is crucial for the functionality of complex II in breast cancer cells and acts on glutaminolysis in the mitochondria.


Asunto(s)
Mitocondrias , Neoplasias , Mitocondrias/metabolismo , Glutamina/metabolismo , Hidrolasas/metabolismo , Apoptosis , Línea Celular
3.
Mech Ageing Dev ; 190: 111284, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574647

RESUMEN

Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.


Asunto(s)
Señalización del Calcio/fisiología , Senescencia Celular/fisiología , Hidrolasas/fisiología , Proteínas de Unión al Calcio/metabolismo , Biología Computacional , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA