Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068796

RESUMEN

BACKGROUND: Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy. METHOD: We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies. RESULTS: BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys. CONCLUSIONS: Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023.


Asunto(s)
Antígeno CD47 , Neoplasias , Ratones , Animales , Humanos , Linfocitos T/metabolismo , Rituximab , Macrófagos , Neoplasias/tratamiento farmacológico , Anticuerpos Antineoplásicos
2.
Mol Cancer Ther ; 22(6): 765-777, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042205

RESUMEN

MET, the cell-surface receptor for the hepatocyte growth factor/scatter factor, which is widely overexpressed in various solid cancer types, is an attractive target for the development of antibody-based therapeutics. BYON3521 is a novel site-specifically conjugated duocarmycin-based antibody-drug conjugate (ADC), comprising a humanized cysteine-engineered IgG1 monoclonal antibody with low pmol/L binding affinity towards both human and cynomolgus MET. In vitro studies showed that BYON3521 internalizes efficiently upon MET binding and induces both target- and bystander-mediated cell killing. BYON3521 showed good potency and full efficacy in MET-amplified and high MET-expressing cancer cell lines; in moderate and low MET-expressing cancer cell lines good potencies and partial efficacy were observed. In mouse xenograft models, BYON3521 showed significant antitumor activity upon single-dose administration in multiple non-MET-amplified tumor types with low, moderate, and high MET expression, including complete tumor remissions in models with moderate MET expression. In the repeat-dose Good Laboratory Practice (GLP) safety assessment in cynomolgus monkeys, BYON3521 was well tolerated and based on the observed toxicities and their reversibility, the highest non-severely toxic dose was set at 15 mg/kg. A human pharmacokinetics (PK) model was derived from the PK data from the cynomolgus safety assessments, and the minimal efficacious dose in humans is estimated to be in the range of 3 to 4 mg/kg. In all, our nonclinical data suggests that BYON3521 is a safe ADC with potential for clinical benefit in patients. A first-in-human dose-escalation study is currently ongoing to determine the maximum tolerated dose and recommended dose for expansion (NCT05323045).


Asunto(s)
Anticuerpos Monoclonales , Inmunoconjugados , Animales , Humanos , Ratones , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Inmunoglobulina G , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer Ther ; 14(3): 692-703, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25589493

RESUMEN

SYD985 is a HER2-targeting antibody-drug conjugate (ADC) based on trastuzumab and vc-seco-DUBA, a cleavable linker-duocarmycin payload. To evaluate the therapeutic potential of this new ADC, mechanistic in vitro studies and in vivo patient-derived xenograft (PDX) studies were conducted to compare SYD985 head-to-head with T-DM1 (Kadcyla), another trastuzumab-based ADC. SYD985 and T-DM1 had similar binding affinities to HER2 and showed similar internalization. In vitro cytotoxicity assays showed similar potencies and efficacies in HER2 3+ cell lines, but in cell lines with low HER2 expression, SYD985 was 3- to 50-fold more potent than T-DM1. In contrast with T-DM1, SYD985 efficiently induced bystander killing in vitro in HER2-negative (HER2 0) cells mixed with HER2 3+, 2+, or 1+ cell lines. At pH conditions relevant for tumors, cathepsin-B cleavage studies showed efficient release of the active toxin by SYD985 but not by T-DM1. These in vitro data suggest that SYD985 might be a more potent ADC in HER2-expressing tumors in vivo, especially in low HER2-expressing and/or in heterogeneous tumors. In line with this, in vivo antitumor studies in breast cancer PDX models showed that SYD985 is very active in HER2 3+, 2+, and 1+ models, whereas T-DM1 only showed significant antitumor activity in HER2 3+ breast cancer PDX models. These properties of SYD985 may enable expansion of the target population to patients who have low HER2-expressing breast cancer, a patient population with still unmet high medical need.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Indoles/farmacología , Receptor ErbB-2/genética , Animales , Línea Celular Tumoral , Duocarmicinas , Femenino , Humanos , Ratones , Ratones Desnudos , Pirrolidinonas/farmacología , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA