Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta Open ; 7: 100218, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37131405

RESUMEN

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was declared a global pandemic in 2020. Having rapidly spread around the globe, with the emergence of new variants, there is a crucial need to develop diagnostic kits for its rapid detection. Since it validated accuracy and reliability, the reverse transcription polymerase chain reaction (RT-PCR) test has been declared the gold standard for disease detection. However, despite its reliability, the requirement of specialized facilities, reagents, and duration of a PCR run limits its usage for rapid detection. There is thus a continuous increase in the design and development of rapid, point-of-care (PoC), and cost-effective diagnostic kits. In this review, we discuss the potential of carbon-based biosensors for target-specific detection of coronavirus disease 19 (COVID-19) and present an overview of investigation within the timeframe of the last four years (2019-2022), which have developed novel platforms using carbon nanomaterial-based approaches for viral detection. The approaches discussed offer rapid, accurate, and cost-effective strategies for COVID-19 detection for healthcare personnel and research workers.

2.
Chem Asian J ; 17(24): e202200896, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36256453

RESUMEN

Gold catalysis is an extremely enthusiastic field of investigation in the catalysis area. The development of alternative, highly inventive, precompetitive techniques based on gold catalysis has paved the way for executing a broad spectrum of chemical transformations from uncomplicated starting materials. The total synthesis of natural products is a complex and more complicated task. An amalgamation of natural product synthesis through gold-catalysis has been a thought-provoking job. The protocol has solved several problems related to the synthesis of numerous complicated natural products. Thus, this review has outlined some of the most notable benchmarks from the last seven years (2015-2021) on gold catalysis and their application in the total synthesis of numerous natural products. The strategy acquired by the authors to accomplish the total synthesis will be elaborately discussed by emphasizing the role of the gold-catalyzed reactions.


Asunto(s)
Productos Biológicos , Oro , Catálisis
3.
Eur J Med Chem ; 240: 114576, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35816877

RESUMEN

Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016-2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.


Asunto(s)
Aedes , Virus del Dengue , Animales , Antivirales/farmacología , Femenino , Humanos , Nitrógeno , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...