Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 356, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519536

RESUMEN

Lean patients with NAFLD may develop cardiac complications independently of pre-existent metabolic disruptions and comorbidities. To address the underlying mechanisms independent of the development of obesity, we used a murine model of hepatic mitochondrial deficiency. The liver-heart axis was studied as these mice develop microvesicular steatosis without obesity. Our results unveil a sex-dependent phenotypic remodeling beyond liver damage. Males, more than females, show fasting hypoglycemia and increased insulin sensitivity. They exhibit diastolic dysfunction, remodeling of the circulating lipoproteins and cardiac lipidome. Conversely, females do not manifest cardiac dysfunction but exhibit cardiometabolic impairments supported by impaired mitochondrial integrity and ß-oxidation, remodeling of circulating lipoproteins and intracardiac accumulation of deleterious triglycerides. This study underscores metabolic defects in the liver resulting in significant sex-dependent cardiac abnormalities independent of obesity. This experimental model may prove useful to better understand the sex-related variability, notably in the heart, involved in the progression of lean-NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Femenino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Caracteres Sexuales , Modelos Animales de Enfermedad , Obesidad/metabolismo , Lipoproteínas
2.
Biol Direct ; 18(1): 60, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736739

RESUMEN

Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.


Asunto(s)
Endosomas , Transducción de Señal , Ribosomas , Péptido Hidrolasas , Regulación hacia Arriba
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166843, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37558007

RESUMEN

Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid ß-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga , Enfermedades Mitocondriales , Ratones , Humanos , Animales , Lactante , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Calcio , Enfermedades Mitocondriales/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados , Arritmias Cardíacas
4.
Science ; 379(6627): 45-62, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36603072

RESUMEN

Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.


Asunto(s)
Memoria Epigenética , Inmunidad Innata , Degeneración Macular , Enfermedades Neuroinflamatorias , Obesidad , Animales , Ratones , Citocinas/genética , Inmunidad Innata/genética , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/inmunología , Obesidad/genética , Fagocitos/inmunología , Transcripción Genética , Degeneración Macular/genética , Degeneración Macular/inmunología , Reprogramación Celular/genética , Receptor Toll-Like 4/genética
5.
Structure ; 31(4): 375-384.e4, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36513067

RESUMEN

Agrobacterium tumefaciens is a natural genetic engineer that transfers DNA into plants, which is the most applied process for generation of genetically modified plants. DNA transfer is mediated by a type IV secretion system in the cell envelope and extracellular T-pili. We here report the cryo-electron microscopic structures of the T-pilus at 3.2-Å resolution and of the plasmid pKM101-determined N-pilus at 3-Å resolution. Both pili contain a main pilus protein (VirB2 in A. tumefaciens, TraM in pKM101) and phospholipids arranged in a five-start helical assembly. They contain positively charged amino acids in the lumen, and the lipids are positively charged in the T-pilus (phosphatidylcholine) conferring overall positive charge. Mutagenesis of the lumen-exposed Arg91 in VirB2 results in protein destabilization and loss of pilus formation. Our results reveal that different phospholipids can be incorporated into type IV secretion pili and that the charge of the lumen may be of functional importance.


Asunto(s)
Agrobacterium tumefaciens , Proteínas Bacterianas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Fimbrias Bacterianas/metabolismo , Membrana Celular/metabolismo
6.
Commun Biol ; 4(1): 989, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413467

RESUMEN

Mouse models of genetic mitochondrial disorders are generally used to understand specific molecular defects and their biochemical consequences, but rarely to map compensatory changes allowing survival. Here we took advantage of the extraordinary mitochondrial resilience of hepatic Lrpprc knockout mice to explore this question using native proteomics profiling and lipidomics. In these mice, low levels of the mtRNA binding protein LRPPRC induce a global mitochondrial translation defect and a severe reduction (>80%) in the assembly and activity of the electron transport chain (ETC) complex IV (CIV). Yet, animals show no signs of overt liver failure and capacity of the ETC is preserved. Beyond stimulation of mitochondrial biogenesis, results show that the abundance of mitoribosomes per unit of mitochondria is increased and proteostatic mechanisms are induced in presence of low LRPPRC levels to preserve a balance in the availability of mitochondrial- vs nuclear-encoded ETC subunits. At the level of individual organelles, a stabilization of residual CIV in supercomplexes (SCs) is observed, pointing to a role of these supramolecular arrangements in preserving ETC function. While the SC assembly factor COX7A2L could not contribute to the stabilization of CIV, important changes in membrane glycerophospholipid (GPL), most notably an increase in SC-stabilizing cardiolipins species (CLs), were observed along with an increased abundance of other supramolecular assemblies known to be stabilized by, and/or participate in CL metabolism. Together these data reveal a complex in vivo network of molecular adjustments involved in preserving mitochondrial integrity in energy consuming organs facing OXPHOS defects, which could be therapeutically exploited.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas
7.
Metabolites ; 11(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530524

RESUMEN

Despite advances in our knowledge and attempts to improve therapies, ß-thalassemia remains a prevalent disorder with increased risk for the development of cardiomyopathy. Using an untargeted discovery-based lipidomic workflow, we uncovered that transfusion-dependent thalassemia (TDT) patients had a unique circulating lipidomic signature consisting of 387 lipid features, allowing their significant discrimination from healthy controls (Q-value < 0.01). In particular, TDT patients had elevated triacylglycerols and long-chain acylcarnitines, albeit lower ether phospholipids or plasmalogens, sphingomyelins, and cholesterol esters, reminiscent of that previously characterized in cardiometabolic diseases resulting from mitochondrial and peroxisomal dysfunction. Discriminating lipid (sub)classes correlated differentially with clinical parameters, reflecting blood (ether phospholipids) and iron (cholesterol ester) status or heart function (triacylglycerols). We also tested 15 potential serum biomarkers related to cardiometabolic disease and found that both lipocalin-2 and, for the first time, endocan-1 levels were significantly elevated in TDT patients and showed a strong correlation with blood parameters and three ether diacylglycerophosphatidylcholine species. In conclusion, this study identifies new characteristics of TDT patients which may have relevance in developing biomarkers and therapeutics.

8.
Cancers (Basel) ; 12(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187317

RESUMEN

De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression.

9.
Int J Obes (Lond) ; 44(9): 1936-1945, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546855

RESUMEN

OBJECTIVE: Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear. METHODS: Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage ("supplementation") of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light-dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography-mass spectrometry and real-time PCR, respectively. RESULTS: Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO. CONCLUSIONS: Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo , Dieta Alta en Grasa/efectos adversos , Aceites de Pescado/farmacología , Obesidad , Tejido Adiposo/efectos de los fármacos , Animales , Ansiedad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Depresión , Suplementos Dietéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/psicología
10.
Cardiovasc Res ; 116(1): 171-182, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753422

RESUMEN

AIMS: Heart failure with reduced ejection fraction (HFrEF) causes lung remodelling with myofibroblasts proliferation and fibrosis leading to a restrictive lung syndrome with pulmonary hypertension (PH) and right ventricular (RV) dysfunction. PBI-4050 is a first-in-class anti-fibrotic, anti-inflammatory, and anti-proliferative compound. The present study evaluated the therapeutic impact of PBI-4050 on PH in an HFrEF model. METHODS AND RESULTS: HFrEF was induced after myocardial infarction (MI) in rats. Two weeks later, sham-operated and MI groups received PBI-4050 (200 mg/kg/day by gavage) or saline for 3 weeks. Animals were analysed according to infarct size as large (≥30% left ventricle) or medium MI (<30%). Large MI caused PH and RV hypertrophy (RVH) with a restrictive lung syndrome. PBI-4050 did not adversely affect left ventricular (LV) function but markedly reduced PH and RVH and improved RV dysfunction. PBI-4050 reduced lung remodelling and improved respiratory compliance with decreased lung fibrosis, alveolar wall cellular proliferation and α-smooth muscle actin expression. The increased expression of endothelin-1 (ET-1), transforming growth factor beta (TGF-ß), interleukin-6 (IL-6) and of tissue inhibitor of metalloprotease-1 in the lungs from HFrEF were reduced with PBI-4050 therapy. Activation of isolated human lung fibroblasts (HLFs) to a myofibroblastic pro-fibrogenic phenotype was markedly reduced by PBI-4050. The fatty acid receptor GPR84 was increased in HFrEF lungs and in activated HLFs, and reduced by PBI-4050. GPR84 agonists activated fibrogenesis in HLFs and finally, PBI-4050 reduced ERK1/2 phosphorylation. CONCLUSIONS: PBI-4050 reduces PH and RVH in HFrEF by decreasing lung fibrosis and remodelling. This novel agent decreases the associated restrictive lung syndrome and recovers RV function. A contributing mechanism involves reducing the activation of lung fibroblasts by IL-6, TGF-ß, and ET-1 by antagonism of GPR84 and reduced ERK1/2 phosphorylation. PBI-4050 is a novel promising therapy for targeting lung remodelling in group II PH.


Asunto(s)
Acetatos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Ventrículos Cardíacos/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/prevención & control , Pulmón/efectos de los fármacos , Fibrosis Pulmonar/prevención & control , Disfunción Ventricular Derecha/prevención & control , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Endotelina-1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Interleucina-6/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Masculino , Fosforilación , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/fisiopatología , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología
11.
Artículo en Inglés | MEDLINE | ID: mdl-31568924

RESUMEN

Nutritional deficiencies often precede the diagnosis of cystic fibrosis (CF) in infants, and occur at a stage where the rapidly developing brain is more vulnerable to insult. We aim to compare fat-soluble nutrient status of newly diagnosed non-screened infants with CF to that of healthy infants, and explore the association with neurodevelopment evaluated by electroencephalography (EEG). Our results show that CF infants had lower levels of all fat-soluble vitamins and docosahexaenoic acid (DHA) compared to controls. The auditory evoked potential responses were higher in CF compared to controls whereas the visual components did not differ between groups. DHA levels were correlated with auditory evoked potential responses. Although resting state frequency power was similar between groups, we observed a negative correlation between DHA levels and low frequencies. This study emphasizes the need for long-term neurodevelopmental follow-up of CF infants and pursuing intervention strategies in the future.


Asunto(s)
Fibrosis Quística/fisiopatología , Ácidos Docosahexaenoicos/análisis , Potenciales Evocados Auditivos , Potenciales Evocados Visuales , Vitaminas/análisis , Estudios de Casos y Controles , Fibrosis Quística/metabolismo , Electroencefalografía , Femenino , Humanos , Lactante , Masculino , Proyectos Piloto , Descanso
12.
JCI Insight ; 4(14)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31341105

RESUMEN

Mitochondrial dysfunction characterizes many rare and common age-associated diseases. The biochemical consequences, underlying clinical manifestations, and potential therapeutic targets, remain to be better understood. We tested the hypothesis that lipid dyshomeostasis in mitochondrial disorders goes beyond mitochondrial fatty acid ß-oxidation, particularly in liver. This was achieved using comprehensive untargeted and targeted lipidomics in a case-control cohort of patients with Leigh syndrome French-Canadian variant (LSFC), a mitochondrial disease caused by mutations in LRPPRC, and in mice harboring liver-specific inactivation of Lrpprc (H-Lrpprc-/-). We discovered a plasma lipid signature discriminating LSFC patients from controls encompassing lower levels of plasmalogens and conjugated bile acids, which suggest perturbations in peroxisomal lipid metabolism. This premise was reinforced in H-Lrpprc-/- mice, which compared with littermates recapitulated a similar, albeit stronger peroxisomal metabolic signature in plasma and liver including elevated levels of very-long-chain acylcarnitines. These mice also presented higher transcript levels for hepatic markers of peroxisome proliferation in addition to lipid remodeling reminiscent of nonalcoholic fatty liver diseases. Our study underscores the value of lipidomics to unveil unexpected mechanisms underlying lipid dyshomeostasis ensuing from mitochondrial dysfunction herein implying peroxisomes and liver, which likely contribute to the pathophysiology of LSFC, but also other rare and common mitochondrial diseases.


Asunto(s)
Enfermedad de Leigh/diagnóstico , Metabolismo de los Lípidos/genética , Proteínas de Neoplasias/genética , Plasmalógenos/sangre , Adolescente , Animales , Ácidos y Sales Biliares/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Carnitina/análogos & derivados , Carnitina/sangre , Carnitina/metabolismo , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Leigh/sangre , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Lipidómica , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Peroxisomas/metabolismo , Plasmalógenos/metabolismo , Estudios Prospectivos , Adulto Joven
13.
Metabolites ; 9(5)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130652

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfα, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma ß40- and ß42-amyloid levels and altered hepatic but not brain expression of genes involved in ß-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD.

14.
J Nutr ; 149(1): 57-67, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535058

RESUMEN

Background: δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective: The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods: This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results: While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions: Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.


Asunto(s)
Apolipoproteínas B/sangre , Diabetes Mellitus Tipo 2/metabolismo , Ácido Graso Desaturasas/metabolismo , Sobrepeso/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
15.
J Proteome Res ; 17(11): 3657-3670, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30256116

RESUMEN

The goal of this work was to develop a label-free, comprehensive, and reproducible high-resolution liquid chromatography-mass spectrometry (LC-MS)-based untargeted lipidomic workflow using a single instrument, which could be applied to biomarker discovery in both basic and clinical studies. For this, we have (i) optimized lipid extraction and elution to enhance coverage of polar and nonpolar lipids as well as resolution of their isomers, (ii) ensured MS signal reproducibility and linearity, and (iii) developed a bioinformatic pipeline to correct remaining biases. Workflow validation is reported for 48 replicates of a single human plasma sample: 1124 reproducible LC-MS signals were extracted (median signal intensity RSD = 10%), 50% of which are redundant due to adducts, dimers, in-source fragmentation, contaminations, or positive and negative ion duplicates. From the resulting 578 unique compounds, 428 lipids were identified by MS/MS, including acyl chain composition, of which 394 had RSD < 30% inside their linear intensity range, thereby enabling robust semiquantitation. MS signal intensity spanned 4 orders of magnitude, covering 16 lipid subclasses. Finally, the power of our workflow is illustrated by a proof-of-concept study in which 100 samples from healthy human subjects were analyzed and the data set was investigated using three different statistical testing strategies in order to compare their capacity in identifying the impact of sex and age on circulating lipids.


Asunto(s)
Cromatografía Liquida/métodos , Lípidos/aislamiento & purificación , Metaboloma/fisiología , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/instrumentación , Biología Computacional/métodos , Voluntarios Sanos , Humanos , Lípidos/sangre , Lípidos/química , Lípidos/clasificación , Anotación de Secuencia Molecular , Análisis de Componente Principal , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/instrumentación
16.
Can J Physiol Pharmacol ; 96(9): 916-921, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29806983

RESUMEN

The present study was designed to ascertain the effects of 3 diets with different omega-3/6 fatty acid ratios on infarct size and the modifications that these diets induce in the lipid composition of cardiac tissue. Sprague-Dawley rats were fed omega-3/6 fatty acid diets with 1:1, 1:5, or 1:20 ratios for at least 10 days, followed by occlusion of the left anterior descending artery for 40 min and 24 h of reperfusion. Infarct size was significantly smaller in the 1:1 group than in the other groups. Significantly higher concentrations of the omega-3 fatty acids eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were found in the 1:1 group than in the other groups. Omega-6 polyunsaturated fatty acid levels were similar between groups, although they were higher in the 1:5 and 1:20 groups than in the 1:1 group. Margaric acid concentrations were higher in the 1:1 group than in the other groups. Docosahexaenoic acid levels in cardiac tissue and infarct size were significantly correlated with no other significant links being apparent. The present study indicated that a 1:1 omega-3/6 fatty acid ratio protected against ischemia and was associated with increased omega-3 fatty acid composition of cardiac tissue.


Asunto(s)
Cardiotónicos/farmacología , Dieta , Ácidos Grasos Omega-3/farmacología , Lípidos/química , Miocardio/metabolismo , Animales , Hemodinámica/efectos de los fármacos , Infarto del Miocardio/prevención & control , Miocardio/citología , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
17.
Int J Dev Neurosci ; 64: 8-13, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28919371

RESUMEN

Insufficient dietary intake of essential omega-3 polyunsaturated fatty acids (N-3), especially during critical stages of development, is well-associated with negative neurological and metabolic consequences. The increased availability and intake of foods rich in saturated fat coincides with reduced N-3 consumption, yet how N-3 dietary deficiency during perinatal development modulates motivation for palatable food and interacts with a high-fat diet to affect body weight and emotional states is not clear. Pregnant C57Bl6 mice and pups were subjected to diets either deficient or adequate (control) in N-3 until postnatal day 21. Adult male N-3 deficient or control offspring were tested in a progressive ratio operant task for sucrose motivated behavior or given prolonged access to a saturated high-fat diet or chow followed by measures of energy balance and anxiety-like behavior in the elevated-plus maze and open field test. Brain fatty acid profiles were measured via gas chromatography mass spectrometry. Perinatal dietary N-3 deficiency lowered brain N-3 levels, augmented the rewarding effects of sucrose, heightened diet-induced weight gain and fat mass accumulation and diminished spontaneous physical activity. Finally, perinatal N-3 deficiency increased anxiety-like behaviour independent of diet in the open field but not in the elevated-plus maze test. Insufficient dietary N-3 during critical periods of developmental can amplify the obesogenic effects of saturated fat intake, enhance motivated behaviour for palatable foods and may elicit negative emotional states that can perpetuate overeating and obesity.


Asunto(s)
Dieta , Ácidos Grasos Omega-3/deficiencia , Obesidad/metabolismo , Recompensa , Sacarosa/farmacología , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/fisiología , Encéfalo/metabolismo , Ingestión de Alimentos/fisiología , Ácidos Grasos Omega-3/metabolismo , Femenino , Ratones , Embarazo
18.
Psychoneuroendocrinology ; 83: 142-149, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28623763

RESUMEN

Overconsumption of dietary fat can elicit impairments in emotional processes and the response to stress. While excess dietary lipids have been shown to alter hypothalamus-pituitary-adrenal (HPA) axis function and promote anxiety-like behaviour, it is not known if such changes rely on elevated body weight and if these effects are specific to the type of dietary fat. The objective of this study was to investigate the effect of a saturated and a monounsaturated high-fat diet (HFD) on HPA axis function and anxiety-like behaviour in rats. Biochemical, metabolic and behavioural responses were evaluated following eight weeks on one of three diets: (1) a monounsaturated HFD (50%kcal olive oil), (2) a saturated HFD (50%kcal palm oil), or (3) a control low-fat diet. Weight gain was similar across the three diets while visceral fat mass was elevated by the two HFDs. The saturated HFD had specific actions to increase peak plasma levels of corticosterone and tumour-necrosis-factor-alpha and suppress mRNA expression of glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone and 11ß-hydroxysteroid dehydrogenase-1 in the paraventricular nucleus of the hypothalamus. Both HFDs enhanced the corticosterone-suppressing response to dexamethasone administration without affecting the physiological response to a restraint stress and failed to increase anxiety-like behaviour as measured in the elevated-plus maze and open field tests. These findings demonstrate that prolonged intake of saturated fat, without added weight gain, increases CORT and modulates central HPA feedback processes. That saturated HFD failed to affect anxiety-like behaviour can suggest that the anxiogenic effects of prolonged high-fat feeding may rely on more pronounced metabolic dysfunction.


Asunto(s)
Ansiedad/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/psicología , Animales , Trastornos de Ansiedad/metabolismo , Peso Corporal , Corticosterona/análisis , Corticosterona/sangre , Hormona Liberadora de Corticotropina/metabolismo , Dexametasona/farmacología , Grasas de la Dieta/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/efectos adversos , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Glucocorticoides/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Obesidad/metabolismo , Obesidad/psicología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/sangre , Aumento de Peso
19.
Am J Physiol Heart Circ Physiol ; 313(2): H432-H445, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28646031

RESUMEN

High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [13C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart.NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Cetoácidos/farmacología , Cuerpos Cetónicos/farmacología , Leucina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Acetilación , Animales , Transporte Biológico , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Preparación de Corazón Aislado , Cetoácidos/metabolismo , Cuerpos Cetónicos/metabolismo , Leucina/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Transporte de Proteínas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
20.
Diabetes ; 65(2): 381-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26558681

RESUMEN

Heart disease remains a major complication of diabetes, and the identification of new therapeutic targets is essential. This study investigates the role of the protein kinase MK2, a p38 mitogen-activated protein kinase downstream target, in the development of diabetes-induced cardiomyopathy. Diabetes was induced in control (MK2(+/+)) and MK2-null (MK2(-/-)) mice using repeated injections of a low dose of streptozotocin (STZ). This protocol generated in MK2(+/+) mice a model of diabetes characterized by a 50% decrease in plasma insulin, hyperglycemia, and insulin resistance (IR), as well as major contractile dysfunction, which was associated with alterations in proteins involved in calcium handling. While MK2(-/-)-STZ mice remained hyperglycemic, they showed improved IR and none of the cardiac functional or molecular alterations. Further analyses highlighted marked lipid perturbations in MK2(+/+)-STZ mice, which encompass increased 1) circulating levels of free fatty acid, ketone bodies, and long-chain acylcarnitines and 2) cardiac triglyceride accumulation and ex vivo palmitate ß-oxidation. MK2(-/-)-STZ mice were also protected against all these diabetes-induced lipid alterations. Our results demonstrate the benefits of MK2 deletion on diabetes-induced cardiac molecular and lipid metabolic changes, as well as contractile dysfunction. As a result, MK2 represents a new potential therapeutic target to prevent diabetes-induced cardiac dysfunction.


Asunto(s)
Diabetes Mellitus Experimental/genética , Cardiomiopatías Diabéticas/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Metabolismo de los Lípidos/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hiperglucemia/genética , Insulina/sangre , Resistencia a la Insulina/genética , Cuerpos Cetónicos/metabolismo , Ratones , Contracción Muscular/genética , Estreptozocina , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...