Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1092317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124045

RESUMEN

Introduction: M. avium subsp. hominissuis (M. avium) is an intracellular, facultative bacterium known to colonize and infect the human host through ingestion or respiratory inhalation. The majority of pulmonary infections occur in association with pre- existing lung diseases, such as bronchiectasis, cystic fibrosis, or chronic obstructive pulmonary disease. M. avium is also acquired by the gastrointestinal route in immunocompromised individuals such as human immunodeficiency virus HIV-1 patients leading to disseminated disease. A hallmark of M. avium pulmonary infections is the ability of pathogen to form biofilms. In addition, M. avium can reside within granulomas of low oxygen and limited nutrient conditions while establishing a persistent niche through metabolic adaptations. Methods: Bacterial metabolic pathways used by M. avium within the host environment, however, are poorly understood. In this study, we analyzed M. avium proteome with a focus on core metabolic pathways expressed in the anaerobic, biofilm and aerobic conditions and that can be used by the pathogen to transition from one environment to another. Results: Overall, 3,715 common proteins were identified between all studied conditions and proteins with increased synthesis over the of the level of expression in aerobic condition were selected for analysis of in specific metabolic pathways. The data obtained from the M. avium proteome of biofilm phenotype demonstrates in enrichment of metabolic pathways involved in the fatty acid metabolism and biosynthesis of aromatic amino acid and cofactors. Here, we also highlight the importance of chloroalkene degradation pathway and anaerobic fermentationthat enhance during the transition of M. avium from aerobic to anaerobic condition. It was also found that the production of fumarate and succinate by MAV_0927, a conserved hypothetical protein, is essential for M. avium survival and for withstanding the stress condition in biofilm. In addition, the participation of regulatory genes/proteins such as the TetR family MAV_5151 appear to be necessary for M. avium survival under biofilm and anaerobic conditions. Conclusion: Collectively, our data reveal important core metabolic pathways that M. avium utilize under different stress conditions that allow the pathogen to survive in diverse host environments.


Asunto(s)
Mycobacterium avium , Mycobacterium , Humanos , Mycobacterium avium/genética , Proteoma/metabolismo , Redes y Vías Metabólicas
2.
Biomedicines ; 11(5)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37239050

RESUMEN

Pulmonary infections caused by Mycobacterium abscessus (MAB) have been increasing in incidence in recent years, leading to chronic and many times fatal infections due to MAB's natural resistance to most available antimicrobials. The use of bacteriophages (phages) in clinics is emerging as a novel treatment strategy to save the lives of patients suffering from drug-resistant, chronic, and disseminated infections. The substantial research indicates that phage-antibiotic combination therapy can display synergy and be clinically more effective than phage therapy alone. However, there is limited knowledge in the understanding of the molecular mechanisms in phage-mycobacteria interaction and the synergism of phage-antibiotic combinations. We generated the lytic mycobacteriophage library and studied phage specificity and the host range in MAB clinical isolates and characterized the phage's ability to lyse the pathogen under various environmental and mammalian host stress conditions. Our results indicate that phage lytic efficiency is altered by environmental conditions, especially in conditions of biofilm and intracellular states of MAB. By utilizing the MAB gene knockout mutants of the MAB_0937c/MmpL10 drug efflux pump and MAB_0939/pks polyketide synthase enzyme, we discovered the surface glycolipid diacyltrehalose/polyacyltrehalose (DAT/PAT) as one of the major primary phage receptors in mycobacteria. We also established a set of phages that alter the MmpL10 multidrug efflux pump function in MAB through an evolutionary trade-off mechanism. The combination of these phages with antibiotics significantly decreases the number of viable bacteria when compared to phage or antibiotic-alone treatments. This study deepens our understanding of phage-mycobacteria interaction mechanisms and identifies therapeutic phages that can lower bacterial fitness by impairing an antibiotic efflux function and attenuating the MAB intrinsic resistance mechanism via targeted therapy.

3.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144572

RESUMEN

Mycobacterial pathogens are intrinsically resistant to many available antibiotics, making treatment extremely challenging, especially in immunocompromised individuals and patients with underlying and chronic lung conditions. Even with lengthy therapy and the use of a combination of antibiotics, clinical success for non-tuberculous mycobacteria (NTM) is achieved in fewer than half of the cases. The need for novel antibiotics that are effective against NTM is urgent. To identify such new compounds, a whole cell high-throughput screen (HTS) was performed in this study. Compounds from the Chembridge DIVERSet library were tested for their ability to inhibit intracellular survival of M. avium subsp. hominissuis (MAH) expressing dtTomato protein, using fluorescence as a readout. Fifty-eight compounds were identified to significantly inhibit fluorescent readings of MAH. In subsequent assays, it was found that treatment of MAH-infected THP-1 macrophages with 27 of 58 hit compounds led to a significant reduction in intracellular viable bacteria, while 19 compounds decreased M. abscessus subsp. abscessus (Mab) survival rates within phagocytic cells. In addition, the hit compounds were tested in M. tuberculosis H37Ra (Mtb) and 14 compounds were found to exhibit activity in activated THP-1 cells. While the majority of compounds displayed inhibitory activity against both replicating (extracellular) and non-replicating (intracellular) forms of bacteria, a set of compounds appeared to be effective exclusively against intracellular bacteria. The efficacy of these compounds was examined in combination with current antibiotics and survival of both NTM and Mtb were evaluated within phagocytic cells. In time-kill dynamic studies, it was found that co-treatment promoted increased bacterial clearance when compared with the antibiotic or compound group alone. This study describes promising anti-NTM and anti-Mtb compounds with potential novel mechanisms of action that target intracellular bacteria in activated macrophages.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Macrófagos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
4.
Microbiology (Reading) ; 168(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35133955

RESUMEN

Virulent non-tuberculous Mycobacteria (NTMs) successfully reside and multiply within the phagosomes of phagocytic cells such as monocytes and macrophages. Macrophages play a very important role in the innate clearance of intracellular pathogens including NTMs. Attenuated Mycobacterium avium subsp. hominissuis 100 enters macrophages but is incapable of escaping these cells via canonical mycobacteria escape mechanisms. Alternatively, virulent Mycobacterium avium subsp. hominissuis 104 and Mycobacterium abscessus subsp. abscessus are able to modify macrophages to suit their growth, survival and ultimately escape from macrophages, while non-virulent Mycobacterium smegmatis is readily killed by macrophages. In this study we focused on early infection of macrophages with NTMs to determine the phenotypic response of macrophages, M1 or M2 differentiation, and phosphorylation alterations that can affect cellular response to invading bacteria. Our findings indicate that infection of the macrophage with MAH 100 and M. smegmatis favours the development of M1 macrophage, a pro-inflammatory phenotype associated with the killing of intracellular pathogens, while infection of the macrophage with MAH 104 and M. abscessus favoured the development of M2 macrophage, an anti-inflammatory phenotype associated with the healing process. Interference with the host post-translational mechanisms, such as protein phosphorylation, is a key strategy used by many intracellular bacterial pathogens to modulate macrophage phenotype and subvert macrophage function. By comparing protein phosphorylation patterns of infected macrophages, we observed that uptake of both MAH 100 and M. smegmatis resulted in MARCKS-related protein phosphorylation, which has been associated with macrophage activation. In contrast, in macrophages infected with MAH 104 and M. abscessus, methionine adenosyltransferase IIß, an enzyme that catalyses the biosynthesis of S-adenosylmethionine, a methyl donor for DNA methylation. Inhibition of DNA methylation with 5-aza-2 deoxycytidine, significantly impaired the survival of MAH 104 in macrophages. Our findings suggest that the virulent MAH 104 and M. abscessus enhance its survival in the macrophage possibly through interference with the epigenome responses.


Asunto(s)
Macrófagos , Mycobacterium avium , Activación de Macrófagos , Macrófagos/microbiología , Mycobacterium smegmatis/genética
5.
Microorganisms ; 9(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34946129

RESUMEN

Mycobacterium abscessus subsp. abscessus (MAB) is a fast-growing nontuberculous mycobacterium causing pulmonary infections in immunocompromised and immunocompetent individuals. The treatment of MAB infections in clinics is extremely challenging, as this organism is naturally resistant to most available antibiotics. There is limited knowledge on the mechanisms of MAB intrinsic resistance and on the genes that are involved in the tolerance to antimicrobials. To identify the MAB genetic factors, including the components of the cell surface transport systems related to the efflux pumps, major known elements contributing to antibiotic resistance, we screened the MAB transposon library of 2000 gene knockout mutants. The library was exposed at either minimal inhibitory (MIC) or bactericidal concentrations (BC) of amikacin, clarithromycin, or cefoxitin, and MAB susceptibility was determined through the optical density. The 98 susceptible and 36 resistant mutants that exhibited sensitivity below the MIC and resistance to BC, respectively, to all three drugs were sequenced, and 16 mutants were found to belong to surface transport systems, such as the efflux pumps, porins, and carrier membrane enzymes associated with different types of molecule transport. To establish the relevance of the identified transport systems to antibiotic tolerance, the gene expression levels of the export related genes were evaluated in nine MAB clinical isolates in the presence or absence of antibiotics. The selected mutants were also evaluated for their ability to form biofilms and for their intracellular survival in human macrophages. In this study, we identified numerous MAB genes that play an important role in the intrinsic mechanisms to antimicrobials and further demonstrated that, by targeting components of the drug efflux system, we can significantly increase the efficacy of the current antibiotics.

6.
Proteomes ; 9(2)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946162

RESUMEN

Johne's disease is a chronic and usually fatal enteric infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP) and is responsible for hundreds of millions of dollars in losses for the agricultural industry. Natural infection typically begins with bacterial uptake and translocation through the epithelium of the small intestine, followed by ingestion by tissue macrophages and dissemination via the lymphatic or blood system throughout the body. To gain insights into the host responses and adaptation of MAP within phagocytic cells, we utilized the previously developed cell culture passage model, and mass spectrometric-based quantitative proteomic approach. Using the cell culture system, which mimics an in vivo interaction of MAP with intestinal epithelium and tissue macrophages, bacteria were passed through the bovine epithelial cells and, subsequently, used for macrophage infection (termed indirect infection), while uninfected cells and macrophage infection initiated with the culture grown bacteria (termed direct infection) served as controls. Approximately 3900 proteins were identified across all studied groups. The comparison within the subset of proteins that showed synthesis for more than two-fold in the direct infection over the uninfected control revealed an enrichment for the pro-inflammatory pathways such as the NF-κB and cytokine/chemokine signaling, positive regulation of defense response, cell activation involved in the immune response and adaptive immune system. While these responses were absent in the indirect infection, cellular pathways such as cell cycle, healing, regulation of cell adhesion, ensemble of core extracellular matrix proteins, cell surface integrins and proteins mediating the integrin signaling were remarkably high within the indirect infection. In addition to global analysis of the macrophage proteome, we further validated the proteomics data and confirmed that MAP passage through epithelial cells modulates the expression and signaling of integrins in phagocytes. In this study, we demonstrate that predominant expression of integrins in the indirectly infected macrophages allows phagocytic cells to initiate stronger binding and efficient translocation through the endothelial cells, suggesting the important role of integrins in the spread of MAP infection.

7.
Antibiotics (Basel) ; 9(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352715

RESUMEN

Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic intracellular pathogen causing infections in individuals with chronic lung conditions and patients with immune-deficient disorders. The treatment of MAH infections is prolonged and outcomes many times are suboptimal. The reason for the extended treatment is complex and reflects the inability of current antimicrobials to clear diverse phenotypes of MAH quickly, particularly, the subpopulation of susceptible but drug-tolerant bacilli where the persistent fitness to anti-MAH drugs is stimulated and enhanced by the host environmental stresses. In order to enhance the pathogen killing, we need to understand the fundamentals of persistence mechanism and conditions that can initiate the drug-tolerance phenotype in mycobacteria. MAH can influence the intracellular environment through manipulation of the metal concentrations in the phagosome of infected macrophages. While metals play important role and are crucial for many cellular functions, little is known how vacuole elements influence persistence state of MAH during intracellular growth. In this study, we utilized the in vitro model mimicking the metal concentrations and pH of MAH phagosome at 1 h and 24 h post-infection to distinguish if metals encountered in phagosome could act as a trigger factor for persistence phenotype. Antibiotic treatment of metal mix exposed MAH demonstrates that metals of the phagosome environment can enhance the persistence state, and greater number of tolerant bacteria is recovered from the 24 h metal mix when compared to the viable pathogen number in the 1 h metal mix and 7H9 growth control. In addition, bacterial phenotype induced by the 24 h metal mix increases MAH tolerance to macrophage killing in TNF-α and IFN-γ activated cells, confirming presence of persistent MAH in the 24 h metal mix condition. This work shows that the phagosome environment can promote persistence population in MAH, and that the population differs dependent on a concentration of metals.

8.
Microorganisms ; 8(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066018

RESUMEN

The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.

9.
Pathogens ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859077

RESUMEN

Mycobacterium avium subsp. hominissuis (MAH) is a common intracellular pathogen that infects immunocompromised individuals and patients with pre-existing chronic lung diseases, such as cystic fibrosis, who develop chronic and persistent pulmonary infections. The metabolic remodeling of MAH in response to host environmental stresses or within biofilms formed in bronchial airways plays an important role in development of the persistence phenotype contributing to the pathogen's tolerance to antibiotic treatment. Recent studies suggest a direct relationship between bacterial metabolic state and antimicrobial susceptibility, and improved antibiotic efficacy has been associated with the enhanced metabolism in bacteria. In the current study, we tested approximately 200 exogenous carbon source-dependent metabolites and identified short-chain fatty acid (SCFA) substrates (propionic, butyric and caproic acids) that MAH can utilize in different physiological states. Selected SCFA enhanced MAH metabolic activity in planktonic and sessile states as well as in the static and established biofilms during nutrient-limited condition. The increased bacterial growth was observed in all conditions except in established biofilms. We also evaluated the influence of SCFA on MAH susceptibility to clinically used antibiotics in established biofilms and during infection of macrophages and found significant reduction in viable bacterial counts in vitro and in cultured macrophages, suggesting improved antibiotic effectiveness against persistent forms of MAH.

10.
Microorganisms ; 8(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397563

RESUMEN

Mycobacterium abscessus subsp. abscessus (MAB) is a clinically important nontuberculous mycobacterium (NTM) causing pulmonary infection in patients such as cystic fibrosis and bronchiectasis. MAB is naturally resistant to the majority of available antibiotics. In attempts to identify the fundamental response of MAB to aerobic, anaerobic, and biofilm conditions (as it is encountered in patients) and during exposure to antibiotics, we studied bacterial proteome using tandem mass tag mass spectrometry sequencing. Numerous de novo synthesized proteins belonging to diverse metabolic pathways were found in anaerobic and biofilm conditions, including glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, nitrogen metabolism, and glyoxylate and dicarboxylate metabolism. Upon exposure to amikacin and linezolid under stress environments, MAB displayed metabolic enrichment for glycerophospholipid metabolism and oxidative phosphorylation. By comparing proteomes of two significant NTMs, MAB and M. avium subsp. hominissuis, we found highly synthesized shared enzymes of oxidative phosphorylation, TCA cycle, glycolysis/gluconeogenesis, glyoxylate/dicarboxylate, nitrogen metabolism, peptidoglycan biosynthesis, and glycerophospholipid/glycerolipid metabolism. The activation of peptidoglycan and fatty acid biosynthesis pathways indicates the attempt of bacteria to modify the cell wall, influencing the susceptibility to antibiotics. This study establishes global changes in the synthesis of enzymes promoting the metabolic shift and enhancing the pathogen resistance to antibiotics within different environments.

11.
Int J Microbiol ; 2019: 9167271, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281365

RESUMEN

Bovine tuberculosis (bTB) is a highly transmissible infection and remains of great concern as a zoonosis. The worldwide incidence of bTB is in rise, creating potential reservoir and increased infection risk for humans and animals. In attempts to identify novel surface antigens of Mycobacterium bovis as a proof-of-concept for potential inducers of protective immunity, we investigated surface proteome of M. bovis BCG strain that was cultured under the granuloma-like condition. We also demonstrated that the pathogen exposed to the biologically relevant environment has greater binding and invasion abilities to host cells than those of bacteria incubated under regular laboratory conditions. A total of 957 surface-exposed proteins were identified for BCG cultured under laboratory condition, whereas 1,097 proteins were expressed under the granuloma-like condition. The overexpression of Mb1524, Mb01_03198, Mb1595_p3681 (PhoU1 same as phoY1_1), and Mb1595_p0530 (HbhA) surface proteins in Mycobacterium smegmatis leads to increased binding and invasion to mucosal cells. We also examined the immunogenicity of purified recombinant proteins and tested M. smegmatis overexpressing these surface antigens for the induction of protective immunity in mice. Significantly high levels of specific IgA and IgG antibodies were observed in recombinant protein immunized groups by both inhalation and intraperitoneal (IP) routes, but only IP delivery induced high total IgA and IgG levels. We did not detect major differences in antibody levels in the M. smegmatis group that overexpressed surface antigens. In addition, the bacterial load was significantly reduced in the lungs of mice immunized with the combination of inhaled recombinant proteins. Our findings suggest that the activation of the mucosal immunity can lead to increased ability to confer protection upon M. bovis BCG infection.

12.
Microorganisms ; 7(5)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117286

RESUMEN

Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic pathogen that is ubiquitous in the environment and often isolated from faucets and showerheads. MAH mostly infects humans with an underlying disease, such as chronic pulmonary disorder, cystic fibrosis, or individuals that are immunocompromised. In recent years, MAH infections in patients without concurrent disease are increasing in prevalence as well. This pathogen is resistant to many antibiotics due to the impermeability of its envelope and due to the phenotypic resistance established within the host macrophages, making difficult to treat MAH infections. By screening a MAH transposon library for mutants that are susceptible to killing by reactive nitrogen intermediaries, we identified the MAV_4644 (MAV_4644:Tn) gene knockout clone that was also significantly attenuated in growth within the host macrophages. Complementation of the mutant restored the wild-type phenotype. The MAV_4644 gene encodes a dual-function protein with a putative pore-forming function and ADP-ribosyltransferase activity. Protein binding assay suggests that MAV_4644 interacts with the host lysosomal peptidase cathepsin Z (CTSZ), a key regulator of the cell signaling and inflammation. Pathogenic mycobacteria have been shown to suppress the action of many cathepsins to establish their intracellular niche. Our results demonstrate that knocking-down the cathepsin Z in human macrophages rescues the attenuated phenotype of MAV_4644:Tn clone. Although, the purified cathepsin Z by itself does not have any killing effect on MAH, it contributes to bacterial killing in the presence of the nitric oxide (NO). Our data suggest that the cathepsin Z is involved in early macrophage killing of MAH, and the virulence factor MAV_4644 protects the pathogen from this process.

13.
Future Microbiol ; 14: 293-313, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30757918

RESUMEN

AIM: To investigate the formation of Mycobacterium avium membrane vesicles (MVs) within macrophage phagosomes. MATERIALS & METHODS: A phagosome model was utilized to characterize proteomics and lipidomics of MVs. A click chemistry-based enrichment assay was employed to examine the presence of MV proteins in the cytosol of host cells. RESULTS: Exposure to metals at concentrations present in phagosomes triggers formation of bacterial MVs. Proteomics identified several virulence factors, including enzymes involved in the cell wall synthesis, lipid and fatty acid metabolism. Some of MV proteins were also identified in the cytosol of infected macrophages. MVs harbor dsDNA. CONCLUSION: M. avium produces MVs within phagosomes. MVs carry products with potential roles in modulation of host immune defenses and intracellular survival.


Asunto(s)
Macrófagos/metabolismo , Infecciones por Mycobacterium/microbiología , Mycobacterium avium/metabolismo , Fagosomas/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Humanos , Macrófagos/química , Mycobacterium avium/química , Fagosomas/química , Proteómica , Vesículas Transportadoras/química
14.
Virulence ; 9(1): 1287-1300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30134761

RESUMEN

Mycobacterium avium subsp. hominissuis is an opportunistic intracellular pathogen associated with disease in patients either immunosuppression or chronic lung pathology. Once in the host, M. avium preferentially infects and replicates within the phagocytic cells. The host driven macrophage apoptosis appears to be an essential aspect of innate immunity during bacterial infection; however, the existing evidence suggests that M. avium has evolved adaptive approaches to trigger the phagocyte apoptosis, exit apoptotic cells or via ingestion of infected apoptotic bodies subsequently infect neighboring macrophages. By evaluating 4,000 transposon mutants of M. avium in THP-1 cells, we identified clones that can trigger a new form of early host cell apoptosis, which is only observed upon entry into the "secondary-infected" macrophages. Inactivation of MAVA5_06970 gene lead to significant attenuation in intracellular growth within macrophages and mice, and impaired M. avium to induce rapid apoptosis in the "secondary-infected" cells as measured by Annexin V-FITC detection assay. Complementation of MAVA5_06970 gene corrected the attenuation as well as apoptotic phenotypes. The MAVA5_06970 gene encodes for a secreted protein. Using the pull-down assay and then confirmed with the yeast two-hybrid screen, we found that MAVA5_06970 effector interacts with the Secreted Phosphoprotein 1, the cytokine also known as Osteopontin. This interaction enhances the THP-1 cell apoptosis and, consequently, restricts the production of interleukin-12 that likely may limit the activation of the type I immunity pathway in vivo. This work identified a key virulence effector of M. avium that contributes to the cell-to-cell spread of the pathogen.


Asunto(s)
Apoptosis , Proteínas Bacterianas/genética , Macrófagos/microbiología , Mycobacterium avium/patogenicidad , Osteopontina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno , Humanos , Interleucina-12/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Mycobacterium avium/genética , Células THP-1 , Factor de Necrosis Tumoral alfa/inmunología , Virulencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-29998085

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease, chronic and ultimately fatal enteritis that affects ruminant populations worldwide. One mode of MAP transmission is oral when young animals ingest bacteria from the collostrum and milk of infected dams. The exposure to raw milk has a dramatic impact on MAP, resulting in a more invasive and virulent phenotype. The MAP1203 gene is upregulated over 28-fold after exposure of the bacterium to milk. In this study, the role of MAP1203 in binding and invasion of the bovine epithelial cells was investigated. By over-expressing the native MAP1203 gene and two clones of deletion mutant in the signal sequence and of missense mutations changing the integrin domain from RGD into RDE, we demonstrate that MAP1203 plays a role in increasing binding in more than 50% and invasion in 35% of bovine MDBK epithelial cells during early phase of infection. Furthermore, results obtained suggest that MAP1203 is a surface-exposed protein in MAP and the signal sequence is required for processing and expression of functional protein on the surface of the bacterium. Using the protein pull-down assay and far-Western blot, we also demonstrate that MAP1203 interacts with the host dihydropyrimidinase-related protein 2 and glyceraldehyde 3-phosphate dehydrogenase proteins, located on the membrane of epithelial cell and involved in the remodeling of the cytoskeleton. Our data suggests that MAP1203 plays a significant role in the initiation of MAP infection of the bovine epithelium.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Endocitosis , Células Epiteliales/microbiología , Mycobacterium avium subsp. paratuberculosis/fisiología , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Animales , Bovinos , Línea Celular , Eliminación de Gen , Expresión Génica , Factores de Virulencia/genética
16.
Sci Rep ; 7(1): 7007, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765557

RESUMEN

Mycobacterium avium subsp. hominissuis is associated with infection of immunocompromised individuals as well as patients with chronic lung disease. M. avium infects macrophages and actively interfere with the host killing machinery such as apoptosis and autophagy. Bacteria alter the normal endosomal trafficking, prevent the maturation of phagosomes and modify many signaling pathways inside of the macrophage by secreting effector molecules into the cytoplasm. To investigate whether M. avium needs to attach to the internal surface of the vacuole membrane before releasing efferent molecules, vacuole membrane proteins were purified and binding to the surface molecules present in intracellular bacteria was evaluated. The voltage-dependent anion channels (VDAC) were identified as components of M. avium vacuoles in macrophages. M. avium mmpL4 proteins were found to bind to VDAC-1 protein. The inactivation of VDAC-1 function either by pharmacological means or siRNA lead to significant decrease of M. avium survival. Although, we could not establish a role of VDAC channels in the transport of known secreted M. avium proteins, we demonstrated that the porin channels are associated with the export of bacterial cell wall lipids outside of vacuole. Suppression of the host phagosomal transport systems and the pathogen transporter may serve as therapeutic targets for infectious diseases.


Asunto(s)
Metabolismo de los Lípidos , Macrófagos/microbiología , Mycobacterium avium/fisiología , Fagosomas/microbiología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Humanos , Macrófagos/enzimología , Viabilidad Microbiana , Fagosomas/enzimología , Unión Proteica , Células THP-1
17.
Artículo en Inglés | MEDLINE | ID: mdl-28416555

RESUMEN

Tuberculosis (TB) continues to be one of the most common bacterial infectious diseases and is the leading cause of death in many parts of the world. A major limitation of TB therapy is slow killing of the infecting organism, increasing the risk for the development of a tolerance phenotype and drug resistance. Studies indicate that Mycobacterium tuberculosis takes several days to be killed upon treatment with lethal concentrations of antibiotics both in vitro and in vivo To investigate how metabolic remodeling can enable transient bacterial survival during exposure to bactericidal concentrations of compounds, M. tuberculosis strain H37Rv was exposed to twice the MIC of isoniazid, rifampin, moxifloxacin, mefloquine, or bedaquiline for 24 h, 48 h, 4 days, and 6 days, and the bacterial proteomic response was analyzed using quantitative shotgun mass spectrometry. Numerous sets of de novo bacterial proteins were identified over the 6-day treatment. Network analysis and comparisons between the drug treatment groups revealed several shared sets of predominant proteins and enzymes simultaneously belonging to a number of diverse pathways. Overexpression of some of these proteins in the nonpathogenic Mycobacterium smegmatis extended bacterial survival upon exposure to bactericidal concentrations of antimicrobials, and inactivation of some proteins in M. tuberculosis prevented the pathogen from escaping the fast killing in vitro and in macrophages, as well. Our biology-driven approach identified promising bacterial metabolic pathways and enzymes that might be targeted by novel drugs to reduce the length of tuberculosis therapy.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Proteómica/métodos , Diarilquinolinas/farmacología , Fluoroquinolonas/farmacología , Isoniazida/farmacología , Mefloquina/farmacología , Moxifloxacino , Proteoma/metabolismo , Rifampin/farmacología
18.
BMC Microbiol ; 16(1): 270, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829372

RESUMEN

BACKGROUND: Mycobacterium avium subsp. hominissuis is a common intracellular pathogen that infects patients with HIV/AIDS and cause lung infection in patients with underlying lung pathology. M.avium preferably infects macrophages and uses diverse mechanisms to alter phagosome maturation. Once in the macrophage, the pathogen can alter the host cellular defenses by secreting proteins into the cytosol of host cells, but despite considerable research, only a few secreted effector proteins have been identified. We hypothesized that the environmental cues inside the phagosome can trigger bacterial protein secretion. To identify M. avium secretome within the phagosome, we utilized a previously established in vitro system that mimics the metal ion concentrations and pH of the M. avium phagosome. RESULTS: M. avium was exposed to phagosome metal concentrations for different time points and exported proteins were profiled and analyzed against bacterial proteins secreted in the culture medium. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 46 were unique to bacteria incubated in the metal mixture. Ten of potential effectors were selected and secretion of these proteins was monitored within M. avium infected mononuclear phagocytic cells using the beta-lactamase FRET-based reporter system. In addition, pull-down assay was performed for secreted calmodulin-like protein MAV_1356 protein to evaluate for eukaryotic target. All examined M. avium proteins were secreted into the macrophage cytosol, and gene expression analysis suggested that the metal environment likely stimulates secretion of pre-made proteins. Further investigation of bacterial secreted MAV_1356 protein, lead to the observation that the MAV_1356 interacts with the host proteins Annexin A1 and Protein S100-A8. CONCLUSIONS: We established an in vitro system for the study if proteins secreted intracellularly, and revealed that the metal mixture mimicking the concentration of metals in the phagosome environment, triggers protein secretion.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium avium/genética , Mycobacterium avium/metabolismo , Fagosomas/metabolismo , Proteínas Bacterianas/genética , Calmodulina/metabolismo , Cationes/metabolismo , Línea Celular , Citosol/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Interacciones Huésped-Patógeno , Humanos , Macrófagos/microbiología , Metales/metabolismo , Metales/farmacología , Monocitos/microbiología , Mycobacterium avium/aislamiento & purificación , Proteoma/metabolismo , ARN Bacteriano/genética , beta-Lactamasas/metabolismo
19.
Virulence ; 7(1): 23-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26605666

RESUMEN

Alveolar macrophages are the main line of innate immune response against M. tuberculosis (Mtb) infection. However, these cells serve as the major intracellular niche for Mtb enhancing its survival, replication and, later on, cell-to-cell spread. Mtb-associated cytotoxicity of macrophages has been well documented, but limited information exists about mechanisms by which the pathogen induces cell necrosis. To identify virulence factors involved in the induction of necrosis, we screened 5,000 transposon mutants of Mtb for clones that failed to promote the host cell necrosis in a similar manner as the wild-type bacterium. Five Mtb mutants were identified as potential candidates inducing significantly lower levels of THP-1 cell damage in contrast to the H37Rv wild-type infection. Reduced levels of the cell damage by necrosis deficient mutants (NDMs) were also associated with delayed damage of mitochondrial membrane permeability when compared with the wild-type infection over time. Two knockout mutants of the Rv3873 gene, encoding a cell wall PPE68 protein of RD1 region, were identified out of 5 NDMs. Further investigation lead to the observation that PPE68 protein interacts and exports several unknown or known surface/secreted proteins, among them Rv2626c is associated with the host cell necrosis. When the Rv2626c gene is deleted from the genome of Mtb, the bacterium displays significantly less necrosis in THP-1 cells and, conversely, the overexpression of Rv2626c promotes the host cell necrosis at early time points of infections in contrast to the wild-type strain.


Asunto(s)
Proteínas Bacterianas/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/microbiología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/inmunología , Línea Celular , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Macrófagos Alveolares/patología , Mutación , Necrosis/microbiología , Transcriptoma , Tuberculosis/inmunología , Tuberculosis/patología , Factor de Necrosis Tumoral alfa
20.
Adv Microbiol ; 6(13): 927-941, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34295573

RESUMEN

Mycobacterium avium is an opportunistic bacterium associated with pathogenic behavior in both humans and animals. M. avium has evolved as a pathogen by having an environmental component in its life style. Prophages are the integrated viral forms in bacterium genome. They constitute about 10% - 20% of genome of many bacteria and they contribute to pathogenicity of microbes. We investigated whether the M. avium 104 genome contained prophages and evaluated the genes/proteins for putative functions. Three prophage genes were identified in the M. avium 104 database, and sequences were analyzed for specific motifs. The prophage sequences were then cloned in Mycobacterium smegmatis and the bacterial phenotype was evaluated in gain of function assays for environmental stresses, such as tolerance to extreme temperatures, UV light, biofilm formation and resistance to acid as well as macrophage survival. The results indicate that two of the prophage genes, MAV_0696 and MAV_2265, confer M. smegmatis with enhanced ability to produce biofilm. Using a Real-Time PCR, it was determined that MAV_0696 and MAV_2265 transcripts were upregulated upon biofilm formation by M. avium. The expression of MAV_2265 gene was significantly higher at all selected time points. In addition, the expression of MAV_2265 in M. smegmatis also led to significantly greater survival rate at pH 5.0 compared to the wild-type control. None of the other physical abilities were altered by overexpressing the prophage genes in M. smegmatis. In summary, we identified three prophage sequences in M. avium 104, from which two of them were found to be associated with biofilm formation and one with resistance to the acidic environment. Future studies will identify the mechanisms involved in the prophages function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...