Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-21960526

RESUMEN

Studies from many laboratories document that the MYC oncogene produces a pleiotropic transcription factor, Myc, which influences genes driven by all three RNA polymerases to orchestrate nutrient import with biomass accumulation for cell division. Myc has been shown to activate genes involved in glycolysis, glutaminolysis, and mitochondrial biogenesis to provide ATP and anabolic substrates for cell mass accumulation. Myc stimulates ribosome biogenesis and orchestrates the energetic demand for biomass accumulation through its regulation of glucose and glutamine import and metabolism. When normal cells are deprived of nutrients, endogenous MYC expression diminishes and cells withdraw from the cell cycle. However, ectopic MYC-driven cancer cells are locked in a state of deregulated biomass accumulation, which renders them addicted to glucose and glutamine. This addictive state can be exploited for cancer therapy, because nutrient deprivation kills Myc-driven cells and inhibition of the Myc targets, lactate dehydrogenase A or glutaminase, diminishes tumor xenograft growth in vivo.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogénicas c-myc/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Ribosomas/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-18811052

RESUMEN

c-MYC and the hypoxia-inducible factors (HIFs) are critical factors for tumorigenesis in a large number of human cancers. While the normal function of MYC involves the induction of cell proliferation and enhancement of cellular metabolism, the function of HIF, particularly HIF-1, involves adaptation to the hypoxic microenvironment, including activation of anaerobic glycolysis. When MYC-dependent tumors grow, the hypoxic tumor microenvironment elevates the levels of HIF, such that oncogenic MYC and HIF collaborate to enhance the cancer cell's metabolic needs through increased uptake of glucose and its conversion to lactate. HIF is also able to attenuate mitochondrial respiration through the induction of pyruvate dehydrogenase kinase 1 (PDK1), which in part accounts for the Warburg effect that describes the propensity for cancers to avidly take up glucose and convert it to lactate with the concurrent decrease in mitochondrial respiration. Target genes that are common to both HIF and MYC, such as PDK1, LDHA, HK2, and TFRC, are therefore attractive therapeutic targets, because their coordinate induction by HIF and MYC widens the therapeutic window between cancer and normal tissues.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Antioxidantes/farmacología , ADN de Neoplasias/metabolismo , Factores de Transcripción E2F/metabolismo , Femenino , Genes myc , Glucólisis , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Curr Top Microbiol Immunol ; 302: 145-67, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16620028

RESUMEN

The c-Myc oncogenic transcription factor plays a central role in many human cancers through the regulation of gene expression. Although the molecular mechanisms by which c-Myc and its obligate partner, Max, regulate gene expression are becoming better defined, genes or transcriptomes that c-Myc regulate are just emerging from a variety of different experimental approaches. Studies of individual c-Myc target genes and their functional implications are now complemented by large surveys of c-Myc target genes through the use of subtraction cloning, DNA microarray analysis, serial analysis of gene expression (SAGE), chromatin immunoprecipitation, and genome marking methods. To fully appreciate the differences between physiological c-Myc function in normal cells and deregulated c-Myc function in tumors, the challenge now is to determine how the authenticated transcriptomes effect the various phenotypes induced by c-Myc and to define how c-Myc transcriptomes are altered by the Mad family of proteins.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Adhesión Celular , Ciclo Celular , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Transcripción Genética
4.
J Clin Invest ; 108(10): 1541-7, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11714746

RESUMEN

Arsenic is effective in the treatment of acute promyelocytic leukemia. Paradoxically, it is also carcinogenic. In the process of elucidating a mechanism of arsenic resistance in a leukemia cell line, NB4, we discovered that arsenic exposure causes chromosomal abnormalities, with a preponderance of end-to-end fusions. These chromosomal end fusions suggested that telomerase activity may be inhibited by arsenic. We found that arsenic inhibits transcription of the hTERT gene, which encodes the reverse transcriptase subunit of human telomerase. This effect may in part be explained by decreased c-Myc and Sp1 transcription factor activities. Decreased telomerase activity leads to chromosomal end lesions, which promote either genomic instability and carcinogenesis or cancer cell death. These phenomena may explain the seemingly paradoxical carcinogenic and antitumor effects of arsenic.


Asunto(s)
Arsénico/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Telomerasa/genética , Transcripción Genética/efectos de los fármacos , Células 3T3 , Animales , Secuencia de Bases , Cromosomas Humanos , ADN/metabolismo , Cartilla de ADN , Proteínas de Unión al ADN , Humanos , Ratones , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/metabolismo , Células Tumorales Cultivadas
5.
J Biol Chem ; 276(51): 48285-91, 2001 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-11604407

RESUMEN

The genetic program through which a specific transcription factor regulates a biological response is fundamental to our understanding how instructions in the genome are implemented. The emergence of DNA microarray technology for gene expression analysis has generated vast numbers of target genes resulting from specific transcription factor activity. We use the oncogenic transcription factor c-Myc as proof-of-principle that human genome sequence analysis and scanning of a specific gene by chromatin immunoprecipitation can be coupled to identify target transcription factor binding sequences. We focused on nucleophosmin, also known as B23, which was identified as a candidate Myc-responsive gene from a subtractive hybridization screen, and we found that sequences in intron 1, and not 5' sequences in the proximal promoter, are bound by c-Myc in vivo. Hence, a scanning chromatin immunoprecipitation (SChIP) strategy is useful in analyzing functional transcription factor-binding sites.


Asunto(s)
Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células 3T3 , Animales , Secuencia de Bases , Cartilla de ADN , Perfilación de la Expresión Génica , Ratones , Hibridación de Ácido Nucleico , Nucleofosmina , Reacción en Cadena de la Polimerasa , Pruebas de Precipitina , Unión Proteica , Ratas
6.
Oncogene ; 20(42): 6084-94, 2001 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-11593416

RESUMEN

In addition to c-myc rearrangement, over 50% of Burkitt's lymphoma cases present clustered mutations in exon 2, where many of the functional activities of c-Myc protein are based. This report describes the functional consequences induced by tumour-derived c-myc mutations located in c-myc box II. Two mutated alleles were studied, focusing on the P138C mutation, and compared to wild-type c-myc. The c-Myc transformation, transactivation and apoptosis activities were explored based on cells over-expressing c-Myc. While the transcriptional activation activity was not affected, our experiments exploring the anchorage-independent growth capacity of c-Myc-transfected Rat1a cells showed that c-Myc box II mutants were less potent than wild-type c-Myc in promoting cell transformation. Considering the possibility that these mutations could be interfering with the ability of c-Myc to promote apoptosis, we tested c-Myc-transfected Rat1a fibroblasts under several conditions: serum deprivation-, staurosporine- and TNFalpha-induced cell death. Interestingly, the mutated alleles were characterized by an overall decrease in ability to mediate apoptosis. Our study indicates that point mutations located in c-Myc box II can decrease the ability of the protein to promote both transformation and apoptosis without modifying its transactivating activity.


Asunto(s)
Apoptosis , Linfoma de Burkitt/genética , Transformación Celular Neoplásica , Mutación Puntual , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Tamoxifeno/análogos & derivados , Alelos , Animales , Linfoma de Burkitt/patología , Línea Celular , Secuencia Conservada , Fenotipo , Ratas , Receptores de Estrógenos/agonistas , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Estaurosporina/farmacología , Tamoxifeno/farmacología , Transactivadores/genética , Transactivadores/fisiología , Transfección , Factor de Necrosis Tumoral alfa/farmacología
7.
Oncogene ; 20(40): 5595-610, 2001 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-11607812

RESUMEN

c-MYC is the prototype for oncogene activation by chromosomal translocation. In contrast to the tightly regulated expression of c-myc in normal cells, c-myc is frequently deregulated in human cancers. Herein, aspects of c-myc gene activation and the function of the c-Myc protein are reviewed. The c-myc gene produces an oncogenic transcription factor that affects diverse cellular processes involved in cell growth, cell proliferation, apoptosis and cellular metabolism. Complete removal of c-myc results in slowed cell growth and proliferation, suggesting that while c-myc is not required for cell proliferation, it acts as an integrator and accelerator of cellular metabolism and proliferation.


Asunto(s)
Genes myc/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Transcripción , Translocación Genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Linfoma de Burkitt/genética , Adhesión Celular , Diferenciación Celular , División Celular , Senescencia Celular , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Modelos Genéticos , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Transcripción Genética , Activación Transcripcional
8.
J Biol Chem ; 276(51): 48276-84, 2001 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-11598121

RESUMEN

We have identified a novel c-Myc-responsive gene, named JPO1, by representational difference analysis. JPO1 responds to two inducible c-Myc systems and behaves as a direct c-Myc target gene. JPO1 mRNA expression is readily detectable in the thymus, small intestine, and colon, whereas expression is relatively low in spleen, bone marrow, and peripheral leukocytes. We cloned a full-length JPO1 cDNA that encodes a 47-kDa nuclear protein. To determine the role of JPO1 in Myc-mediated cellular phenotypes, stable Rat1a fibroblasts overexpressing JPO1 were tested and compared with transformed Rat1a-Myc cells. Although JPO1 has a diminished transforming activity as compared with c-Myc, JPO1 complements a transformation-defective Myc Box II mutant in the Rat1a transformation assay. This complementation provides evidence for a genetic link between c-Myc and JPO1. Similar to c-Myc, JPO1 overexpression enhances the clonogenicity of CB33 human lymphoblastoid cells in methylcellulose assays. These observations suggest that JPO1 participates in c-Myc-mediated transformation, supporting an emerging concept that c-Myc target genes constitute nodal points in a network of pathways that lead from c-Myc to various Myc-related phenotypes and ultimately to tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes myc , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Mapeo Cromosómico , Cromosomas Humanos Par 2 , Clonación Molecular , ADN Complementario , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Ratas
9.
JAMA ; 286(6): 714-6, 2001 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-11495622

RESUMEN

Macrocytic anemia occurring in patients with fatigue suggests numerous diagnoses, ranging from nutritional deficiencies to a myelodysplastic syndrome. A careful history-taking is critically important for recognition of runner's anemia, which is due to plasma volume expansion, with hemolysis from the pounding of feet on pavement, and hemoglobinuria. Gastrointestinal blood loss may also contribute to anemia in long-distance runners. Early recognition of runner's anemia in patients with a complex presentation of anemia is important in circumventing many diagnostic tests. Runner's anemia should be considered when, amidst a constellation of signs and symptoms, mild anemia is well tolerated by an avid runner.


Asunto(s)
Anemia Hemolítica/diagnóstico , Anemia Macrocítica/diagnóstico , Carrera , Adulto , Anemia Hemolítica/clasificación , Enfermedad Crónica , Fatiga/complicaciones , Femenino , Hemoglobinuria Paroxística/diagnóstico , Humanos , Síndromes Mielodisplásicos/diagnóstico , Pancitopenia/complicaciones
10.
Anal Biochem ; 288(2): 141-148, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11152584

RESUMEN

Representational difference analysis (RDA) combined with cDNA arrays is an effective approach to identify differentially expressed genes. To identify differentially expressed genes in c-Myc transgenic mouse liver, we compared the virtues of probing commercially available cDNA arrays with either radiolabeled cDNA pools or radiolabeled difference products (DP2) derived from RDA using c-Myc transgenic and normal mouse liver. Probing commercial and custom arrays with DP2 products led to the identification of transcripts of low abundance that were missed when the arrays were initially probed with PCR-amplified cDNA pools. Although DP2 probes also detected abundant transcripts that are highly differentially expressed, they failed to identify abundant transcripts with low differential expression that were detected with cDNA pools. The combined use of radiolabeled cDNA and DP2 products to probe arrays allows a more comprehensive identification of differentially expressed transcripts that are abundant or rare. Our method has the additional benefit of eliminating false-positive transcripts that lack true differential expression and frequently contaminate DP2 pools. Using this method we identified 16 differentially expressed genes in c-Myc transgenic liver, one of which is novel.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , ADN Complementario , Genes myc , Hígado/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico
11.
J Biol Chem ; 276(11): 7919-26, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11112789

RESUMEN

Mammalian cellular responses to hypoxia include adaptive metabolic changes and a G1 cell cycle arrest. Although transcriptional regulation of metabolic genes by the hypoxia-induced transcription factor (HIF-1) has been established, the mechanism for the hypoxia-induced G1 arrest is not known. By using genetically defined primary wild-type murine embryo fibroblasts and those nullizygous for regulators of the G1/S checkpoint, we observed that the retinoblastoma protein is essential for the G1/S hypoxia-induced checkpoint, whereas p53 and p21 are not required. In addition, we found that the cyclin-dependent kinase inhibitor p27 is induced by hypoxia, thereby inhibiting CDK2 activity and forestalling S phase entry through retinoblastoma protein hypophosphorylation. Reduction or absence of p27 abrogated the hypoxia-induced G1 checkpoint, suggesting that it is a key regulator of G1/S transition in hypoxic cells. Intriguingly, hypoxic induction of p27 appears to be transcriptional and through an HIF-1-independent region of its proximal promoter. This demonstration of the molecular mechanism of hypoxia-induced G1/S regulation provides insight into a fundamental response of mammalian cells to low oxygen tension.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas de Ciclo Celular , Hipoxia de la Célula , Fase G1 , Proteínas Asociadas a Microtúbulos/fisiología , Fase S , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Células Cultivadas , Ciclina D , Quinasa 2 Dependiente de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas de Unión al ADN/fisiología , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
12.
Cancer Res ; 60(21): 5922-8, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11085504

RESUMEN

c-Myc functions through direct activation or repression of transcription. Using cDNA microarray analysis, we have identified c-Myc-responsive genes by comparing gene expression profiles between c-myc null and c-myc wild-type rat fibroblast cells and between c-myc null and c-myc null cells reconstituted with c-myc. From a panel of 4400 cDNA elements, we found 198 genes responsive to c-myc when comparing wild-type or reconstituted cells with the null cells. The plurality of the named c-Myc-responsive genes that were up-regulated, including 30 ribosomal protein genes, are involved in macromolecular synthesis and metabolism, suggesting a major role of c-Myc in the regulation of protein synthetic and metabolic pathways. When ectopically overexpressed, c-Myc induced a different and smaller set of c-Myc-responsive genes as compared with the physiologically expressed c-Myc condition. Thus, these results from expression profiling suggest a new primary function for c-Myc and raise the possibility that the physiological and transforming functions of c-myc may be separable.


Asunto(s)
Perfilación de la Expresión Génica , Genes myc/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Línea Celular , ADN Complementario/genética , Regulación hacia Abajo , Fibroblastos/fisiología , Regulación de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Regulación hacia Arriba
13.
Cancer Res ; 60(21): 6178-83, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11085542

RESUMEN

The characterization of c-Myc target genes, such as rcl and lactate dehydrogenase A (LDH-A), is critical for understanding the mechanisms of c-Myc-induced cell transformation and tumorigenesis. We have previously demonstrated that Rcl induces anchorage-independent growth in Ratla fibroblasts and that LDH-A is required for cell transformation by c-Myc. In this study, we report that Rcl and LDH-A act synergistically to induce anchorage-independent growth. Cells expressing both Rcl and LDH-A form tumors after s.c. injection into nude mice, although neither Rcl or LDH-A overexpression alone induces tumorigenesis. The inability of Rcl and LDH-A to fully recapitulate c-Myc activity, however, indicates that other c-Myc target genes participate in tumorigenesis. In addition, cells that coexpress Rcl and vascular endothelial growth factor are more comparable with c-Myc overexpressing cells in their ability to form tumors in nude mice. These findings confirm Rcl and LDH-A as critical components of the cell transformation program induced by c-Myc and suggest that Rcl is tumorigenic in cells that are provided with a permissive metabolic milieu.


Asunto(s)
Transformación Celular Neoplásica/genética , Genes myc , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas , Animales , Adhesión Celular/genética , División Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Expresión Génica , Isoenzimas/biosíntesis , Isoenzimas/fisiología , L-Lactato Deshidrogenasa/biosíntesis , L-Lactato Deshidrogenasa/fisiología , Lactato Deshidrogenasa 5 , Masculino , Ratones , Ratones Desnudos , N-Glicosil Hidrolasas , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Ratas
14.
Proc Natl Acad Sci U S A ; 97(21): 11198-202, 2000 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-11005843

RESUMEN

Overexpression of c-Myc in immortalized cells increases cell proliferation, inhibits cell differentiation, and promotes cell transformation. Recent evidence suggests that these effects, however, do not necessarily occur when c-Myc is overexpressed in primary mammalian cells. We sought to determine the immediate effects of transient overexpression of c-Myc in primary cells in vivo by using recombinant adenovirus to overexpress human MYC in mouse liver. Mice were intravenously injected with adenoviruses encoding MYC (Ad/Myc), E2F-1 (Ad/E2F-1), or beta-galactosidase (Ad/LacZ). Transgene expression was detectable 4 days after injection. Expression of ectopic c-Myc was immediately accompanied by enlarged and dysmorphic hepatocytes in the absence of significant cell proliferation or apoptosis. These findings were not present in the livers of mice injected with Ad/E2F-1 or Ad/LacZ. Prominent hepatocyte nuclei and nucleoli were associated with the up-regulation of large- and small-subunit ribosomal and nucleolar genes, suggesting that c-Myc may induce their expression to increase cell mass. Our studies support a role for c-Myc in the in vivo control of vertebrate cell size and metabolism independent of cell proliferation.


Asunto(s)
Adenoviridae/genética , Genes myc , Hepatocitos/patología , Ribosomas/genética , Animales , Diferenciación Celular/genética , División Celular/genética , Transformación Celular Neoplásica/genética , Vectores Genéticos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
15.
J Biol Chem ; 275(29): 21797-800, 2000 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-10823814

RESUMEN

Unlike normal mammalian cells, which use oxygen to generate energy, cancer cells rely on glycolysis for energy and are therefore less dependent on oxygen. We previously observed that the c-Myc oncogenic transcription factor regulates lactate dehydrogenase A and induces lactate overproduction. We, therefore, sought to determine whether c-Myc controls other genes regulating glucose metabolism. In Rat1a fibroblasts and murine livers overexpressing c-Myc, the mRNA levels of the glucose transporter GLUT1, phosphoglucose isomerase, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and enolase were elevated. c-Myc directly transactivates genes encoding GLUT1, phosphofructokinase, and enolase and increases glucose uptake in Rat1 fibroblasts. Nuclear run-on studies confirmed that the GLUT1 transcriptional rate is elevated by c-Myc. Our findings suggest that overexpression of the c-Myc oncoprotein deregulates glycolysis through the activation of several components of the glucose metabolic pathway.


Asunto(s)
Regulación de la Expresión Génica , Genes myc , Glucosa/genética , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Animales , Células Cultivadas , Fibroblastos , Transportador de Glucosa de Tipo 1 , Glucólisis/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Ratas
16.
Proc Natl Acad Sci U S A ; 97(5): 2229-34, 2000 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-10688915

RESUMEN

The prototypic oncogene c-MYC encodes a transcription factor that can drive proliferation by promoting cell-cycle reentry. However, the mechanisms through which c-MYC achieves these effects have been unclear. Using serial analysis of gene expression, we have identified the cyclin-dependent kinase 4 (CDK4) gene as a transcriptional target of c-MYC. c-MYC induced a rapid increase in CDK4 mRNA levels through four highly conserved c-MYC binding sites within the CDK4 promoter. Cell-cycle progression is delayed in c-MYC-deficient RAT1 cells, and this delay was associated with a defect in CDK4 induction. Ectopic expression of CDK4 in these cells partially alleviated the growth defect. Thus, CDK4 provides a direct link between the oncogenic effects of c-MYC and cell-cycle regulation.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Regulación Enzimológica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas , Animales , Secuencia de Bases , Células Cultivadas , Quinasa 4 Dependiente de la Ciclina , ADN Complementario , Humanos , Neoplasias Renales/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-myc/genética
17.
Cancer Res ; 60(1): 143-9, 2000 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-10646866

RESUMEN

The c-myc oncogene is frequently amplified in cells grown from lung tumors and has been linked to the malignancy of these cancers. In support of this, c-myc transfection enhances the in vitro proliferation and soft agar cloning of human small cell lung cancer (SCLC) cells. In this study, we surprisingly found that c-myc expression suppressed the formation of tumors by SCLC cells in athymic nude mice. c-myc expression down-regulated the protein and transcript for vascular endothelial growth factor (VEGF) in these SCLC cells, as well as VEGF transcript in rat fibroblasts manipulated for c-myc expression and in liver cells of c-myc-transgenic mice. Finally, bivariate and multivariate analyses demonstrated that the probability of tumor formation from lung cancer cell lines was negatively correlated with the relative expression of c-Myc, positively correlated with the relative expression of VEGF, and that the latent time to tumor formation was increased by the expression of c-Myc and decreased by the expression of VEGF. We hypothesize that, for lung cancer cells, c-Myc suppresses the formation of tumors in vivo by down-regulating VEGF, and that the amplification of c-myc seen in cells grown from lung tumors with a poor prognosis is an artifact of selection for growth in vitro.


Asunto(s)
Carcinoma de Células Pequeñas/genética , Factores de Crecimiento Endotelial/metabolismo , Genes myc/fisiología , Neoplasias Pulmonares/genética , Linfocinas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Varianza , Animales , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/patología , Regulación hacia Abajo , Amplificación de Genes , Genes myc/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Ratones Transgénicos , Pronóstico , Ratas , Transcripción Genética , Transfección , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
18.
Exp Cell Res ; 253(1): 63-77, 1999 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-10579912

RESUMEN

The c-myc gene and the expression of the c-Myc protein are frequently altered in human cancers. The c-myc gene encodes the transcription factor c-Myc, which heterodimerizes with a partner protein, termed Max, to regulate gene expression. Max also heterodimerizes with the Mad family of proteins to repress transcription, antagonize c-Myc, and promote cellular differentiation. The constitutive activation of c-myc expression is key to the genesis of many cancers, and hence the understanding of c-Myc function depends on our understanding of its target genes. In this review, we attempt to place the putative target genes of c-Myc in the context of c-Myc-mediated phenotypes. From this perspective, c-Myc emerges as an oncogenic transcription factor that integrates the cell cycle machinery with cell adhesion, cellular metabolism, and the apoptotic pathways.


Asunto(s)
Transformación Celular Neoplásica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Unión Proteica
19.
Mol Cell Biol ; 19(8): 5339-51, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10409725

RESUMEN

c-myc has been shown to regulate G(1)/S transition, but a role for c-myc in other phases of the cell cycle has not been identified. Exposure of cells to colcemid activates the mitotic spindle checkpoint and arrests cells transiently in metaphase. After prolonged colcemid exposure, the cells withdraw from mitosis and enter a G(1)-like state. In contrast to cells in G(1), colcemid-arrested cells have decreased G(1) cyclin-dependent kinase activity and show hypophosphorylation of the retinoblastoma protein. We have found that overexpression of c-myc causes colcemid-treated human and rodent cells to become either apoptotic or polyploid by replicating DNA without chromosomal segregation. Although c-myc-induced polyploidy is not inhibited by wild-type p53 in immortalized murine fibroblasts, overexpression of c-myc in primary fibroblasts resulted in massive apoptosis of colcemid-treated cells. We surmise that additional genes are altered in immortalized cells to suppress the apoptotic pathway and allow c-myc-overexpressing cells to progress forward in the presence of colcemid. Our results also suggest that c-myc induces DNA rereplication in this G(1)-like state by activating CDK2 activity. These observations indicate that activation of c-myc may contribute to the genomic instability commonly found in human cancers.


Asunto(s)
Ciclo Celular/genética , Replicación del ADN/genética , Regulación de la Expresión Génica , Genes myc , Mitosis/genética , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Transformada , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN/efectos de los fármacos , Demecolcina/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genes de Retinoblastoma , Genes p53 , Genes ras , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Neoplasias/genética , Ratas , Proteínas Recombinantes de Fusión/fisiología , Huso Acromático/efectos de los fármacos
20.
Mol Cell Biol ; 19(8): 5696-706, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10409758

RESUMEN

Current models predict that beta-catenin (beta-cat) functions in Wnt signaling via activation of Tcf/Lef target genes and that its abundance is regulated by the adenomatous polyposis coli (APC) and glycogen synthase kinase 3beta (GSK3beta) proteins. In colon and other cancers, mutations in APC or presumptive GSK3beta phosphorylation sites of beta-cat are associated with constitutive activation of Tcf/Lef transcription. In spite of assumptions about its oncogenic potential, prior efforts to demonstrate that mutated beta-cat will induce neoplastic transformation have yielded equivocal results. We report here that mutated, but not wild-type, beta-cat proteins induced neoplastic transformation of RK3E, an adenovirus E1A-immortalized epithelial cell line. Analysis of the properties of mutant beta-cat proteins and studies with a dominant negative Tcf-4 mutant indicated that the ability of beta-cat to bind and activate Tcf/Lef factors is crucial for transformation. c-myc has recently been implicated as a critical Tcf-regulated target gene. However, c-myc was not consistently activated in beta-cat-transformed RK3E cells, and a dominant negative c-Myc mutant protein failed to inhibit beta-cat transformation. Our findings underscore the role of beta-cat mutations and Tcf/Lef activation in cancer and illustrate a useful system for defining critical factors in beta-cat transformation.


Asunto(s)
Transformación Celular Neoplásica/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genes myc , Transactivadores , Factores de Transcripción/genética , Transcripción Genética , Proteínas de Pez Cebra , Adenoviridae/fisiología , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Línea Celular Transformada/metabolismo , Transformación Celular Viral , Proteínas del Citoesqueleto/fisiología , Células Epiteliales , Genes APC , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Riñón , Factor de Unión 1 al Potenciador Linfoide , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas/fisiología , Ratas , Transducción de Señal , Proteínas Wnt , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...