Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654979

RESUMEN

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Asunto(s)
Precursor de Proteína beta-Amiloide , Tratamiento con ARN de Interferencia , Animales , Ratones , Primates/genética , Primates/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
2.
Biomaterials ; 141: 314-329, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28711779

RESUMEN

Loss of the microvascular (MV) network results in tissue ischemia, loss of tissue function, and is a hallmark of chronic diseases. The incorporation of a functional vascular network with that of the host remains a challenge to utilizing engineered tissues in clinically relevant therapies. We showed that vascular-bed-specific endothelial cells (ECs) exhibit differing angiogenic capacities, with kidney microvascular endothelial cells (MVECs) being the most deficient, and sought to explore the underlying mechanism. Constitutive activation of the phosphatase PTEN in kidney MVECs resulted in impaired PI3K/AKT activity in response to vascular endothelial growth factor (VEGF). Suppression of PTEN in vivo resulted in microvascular regeneration, but was insufficient to improve tissue function. Promoter analysis of the differentially regulated genes in KMVECs suggests that the transcription factor FOXO1 is highly active and RNAseq analysis revealed that hyperactive FOXO1 inhibits VEGF-Notch-dependent tip-cell formation by direct and indirect inhibition of DLL4 expression in response to VEGF. Inhibition of FOXO1 enhanced angiogenesis in human bio-engineered capillaries, and resulted in microvascular regeneration and improved function in mouse models of injury-repair.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Riñón/irrigación sanguínea , Riñón/fisiopatología , Microvasos/fisiopatología , Neovascularización Fisiológica , Adulto , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Riñón/lesiones , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/metabolismo , Microvasos/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Biomaterials ; 35(27): 7786-99, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24930852

RESUMEN

Adhesion molecule signaling is critical to human pluripotent stem cell (hPSC) survival, self-renewal, and differentiation. Thus, hPSCs are grown as clumps of cells on feeder cell layers or poorly defined extracellular matrices such as Matrigel. We sought to define a small molecule that would initiate adhesion-based signaling to serve as a basis for a defined substrate for hPSC culture. Soluble angiopoeitin-1 (Ang-1)-derived peptide QHREDGS added to defined serum-free media increased hPSC colony cell number and size during long- and short-term culture when grown on feeder cell layers or Matrigel, i.e. on standard substrates, without affecting hPSC morphology, growth rate or the ability to differentiate into multiple lineages both in vitro and in vivo. Importantly, QHREDGS treatment decreased hPSC apoptosis during routine passaging and single-cell dissociation. Mechanistically, the interaction of QHREDGS with ß1-integrins increased expression of integrin-linked kinase (ILK), increased expression and activation of extracellular signal-regulated kinases 1/2 (ERK1/2), and decreased caspase-3/7 activity. QHREDGS immobilization to polyethylene glycol hydrogels significantly increased cell adhesion in a dose-dependent manner. We propose QHREDGS as a small molecule inhibitor of hPSC apoptosis and the basis of an affordable defined substrate for hPSC maintenance.


Asunto(s)
Angiopoyetina 1/farmacología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Péptidos/farmacología , Animales , Caspasas/metabolismo , Adhesión Celular/efectos de los fármacos , Recuento de Células , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Integrina beta1/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo
4.
Dev Cell ; 26(1): 45-58, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23830865

RESUMEN

Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.


Asunto(s)
Aorta/fisiología , Regulación del Desarrollo de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Aorta/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio , Endocardio/embriología , Endocardio/metabolismo , Elementos de Facilitación Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Especificidad de Órganos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Regulador Transcripcional ERG , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 33(2): 193-200, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23325476

RESUMEN

The regulated response of endothelial cells to signals in their environment is not only critical for the de novo formation of primordial vascular networks during early development (ie, vasculogenesis), but is also required for the subsequent growth and remodeling of new blood vessels from preexisting ones (ie, angiogenesis). Vascular endothelial growth factors (Vegfs) and their endothelial cell-specific receptors play a crucial role in nearly all aspects of blood vessel growth. How the outputs from these pathways affect and coordinate endothelial behavior is an area of intense research. Recently, numerous studies have highlighted roles for microRNAs in modulating Vegf signaling output in several different contexts. In this review, we will provide an overview of how small RNAs regulate multiple aspects of the Vegf signaling pathway. In particular, we highlight areas where identification of microRNAs and their targets has provided new insight into the role of downstream effectors in modulating Vegf output during development. As Vegf plays a broad role in multiple aspects of endothelial biology and has become a target for therapeutic manipulation of pathological blood vessel growth, microRNAs that affect Vegf signaling output will undoubtedly be major targets of clinical value.


Asunto(s)
Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Vasos Sanguíneos/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Morfogénesis , Neovascularización Fisiológica/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética
6.
Stem Cells Dev ; 21(15): 2838-51, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22594450

RESUMEN

Inducing a stable and predictable program of neural cell fate in pluripotent cells in vitro is an important goal for utilizing these cells for modeling human disease mechanisms. However, the extent to which in vitro neural specification recapitulates in vivo neural specification remains to be fully established. We previously demonstrated that in the mouse embryo, activation of fibroblast growth factor (FGF) signalling promotes definitive neural stem cell (NSC) development through the upregulation of the transcription factor Zfhx1b. Here, we asked whether Zfhx1b is similarly required during neural lineage development of embryonic stem (ES) cells. Zfhx1b gene expression is rapidly upregulated in mouse ES cells cultured in a permissive neural-inducing environment, compared to ES cells in a standard pluripotency maintenance environment, and is potentiated by FGF signalling. However, overexpression of Zfhx1b in ES cells in maintenance conditions, containing serum and leukemia inhibitory factor (LIF), is sufficient to induce Sox1 expression, a marker found in neural precursors and to promote definitive NSC colony formation. Knockdown of Zfhx1b in ES cells using siRNA did not affect the initial transition of ES cells to a neural cell fate, but did diminish the ability of these neural cells to develop further into definitive NSCs. Thus, our findings using ES cells are congruent with evidence from mouse embryos and support a model, whereby intercellular FGF signaling induces Zfhx1b, which promotes the development of definitive NSCs subsequent to an initial neural specification event that is independent of this pathway.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/fisiología , Células-Madre Neurales/metabolismo , Proteínas Represoras/fisiología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Tipificación del Cuerpo , Células Cultivadas , Técnicas de Cocultivo , Células Madre Embrionarias/metabolismo , Factor 8 de Crecimiento de Fibroblastos/fisiología , Expresión Génica , Glicoproteínas/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factor Inhibidor de Leucemia/fisiología , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Regulación hacia Arriba , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
7.
Neural Dev ; 5: 13, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20459606

RESUMEN

BACKGROUND: Mouse definitive neural stem cells (NSCs) are derived from a population of LIF-responsive primitive neural stem cells (pNSCs) within the neurectoderm, yet details on the early signaling and transcriptional mechanisms that control this lineage transition are lacking. Here we tested whether FGF and Wnt signaling pathways can regulate Zfhx1b expression to control early neural stem cell development. RESULTS: By microinjecting FGF8b into the pro-amniotic cavity ex vivo at 7.0 days post-coitum (dpc) and culturing whole embryos, we demonstrate that neurectoderm-specific gene expression (for example, Sox2, Nestin, Zfhx1b) is increased, whereas Wnt3a represses neurectoderm gene expression. To determine whether FGF signaling also mediates the lineage transition from a pNSC to a NSC, 7.0-dpc embryos were microinjected with either FGF8b or inhibitors of the FGF receptor-MAP kinase signaling pathway ex vivo, cultured as whole embryos to approximately 8.5 dpc and assayed for clonal NSC colony formation. We show that pre-activation of FGF signaling in the anterior neurectoderm causes an increase in the number of colony forming NSCs derived later from the anterior neural plate, whereas inhibition of FGF signaling significantly reduces the number of NSC colonies. Interestingly, inhibition of FGF signaling causes the persistence of LIF-responsive pNSCs within the anterior neural plate and over-expression of Zfhx1b in these cells is sufficient to rescue the transition from a LIF-responsive pNSC to an FGF-responsive NSC. CONCLUSION: Our data suggest that definitive NSC fate specification in the mouse neurectoderm is facilitated by FGF activation of Zfhx1b.


Asunto(s)
Ectodermo/embriología , Factores de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Sistema Nervioso/embriología , Neurogénesis/genética , Proteínas Represoras/genética , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Tubo Neural/embriología , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/agonistas , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteína Wnt3 , Proteína Wnt3A , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...