Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(3): 980-984, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194441

RESUMEN

The 2023 Nobel Prize in Chemistry honors the groundbreaking contributions of Alexei Ekimov, Louis Brus, and Moungi Bawendi to the field of quantum dots (QDs). In this spirit, we developed a direct competitive QD fluorescence immunoassay (dc-QD-FLISA) to detect aristolochic acid type I (AAI), a potent carcinogen found in herbal remedies. Unexpectedly, the dc-QD-FLISA exhibited lower sensitivity than that of an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), contrary to our initial expectations. This discrepancy in the sensitivity prompted a comprehensive analysis of the entire experimental process. We propose that steric hindrance between QDs and antigen-binding sites on antibodies may significantly diminish the binding efficiency, reducing sensitivity within the dc-QD-FLISA method. Furthermore, issues such as buffer conditions, antibody handling, and separation methods are also contributing factors. We recommend site-directed QD modification and stringent consideration of the experimental conditions. This study not only provides insights into QD-based immunoassays but also highlights the need for future advancements in immunoassay technology in terms of augmenting sensitivity and specificity, potentially revolutionizing disease diagnosis, biomarker discovery, and biomedical research.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos/química , Sensibilidad y Especificidad
2.
Biotechnol J ; 19(1): e2300532, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059436

RESUMEN

Antibody mimetics represent the fourth generation of antibody engineering, following polyclonal antibodies, monoclonal antibodies, and genetically engineered antibody fragments. Despite cumulative studies highlighting the advantages of antibody mimetics, including enhanced recognition properties, superior affinity, stability, penetrability, and cost-effectiveness, a comprehensive review of this evolving field is notably absent. In this study, spanning 1986-2023 and analyzing 24,318 publications, we undertake a retrospective and prospective analysis to elucidate the evolution roadmap of antibody mimetics, providing insights into the current landscape, global contributions, and future trajectories. Concurrently, our aim is to establish standardized terminology and delineate the research scope within the realm of antibody mimetics. These endeavors not only chart the trajectory and scope of antibody mimetics research but also underscore its potential to revolutionize medicine, technology, and science.


Asunto(s)
Anticuerpos Monoclonales , Ingeniería Genética , Estudios Retrospectivos , Biomimética
3.
ACS Synth Biol ; 12(12): 3704-3715, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37946498

RESUMEN

Virus-like particles (VLPs) are nanostructures with the potential to present heterologous peptides at high density, thereby triggering heightened immunogenicity. RNA bacteriophage MS2 VLPs are a compelling delivery platform among them. However, a notable hurdle arises from the immune response toward MS2 coat protein, swiftly eliminating subsequent vaccinations via the same vector. Although larger inserts effectively mask carrier epitopes, current research predominantly focuses on displaying short conserved peptides (<30 aa). A systematic evaluation regarding the deterministic ability of MS2 VLPs as a platform for presenting heterologous peptides remains a gap. In light of this, we employed the "single-chain dimer" paradigm to scrutinize the tolerance of MS2 VLPs for peptide/protein insertions. The results unveiled functional MS2 VLP assembly solely for inserts smaller than 91 aa. Particularly noteworthy is the largest insertion achieved on the MS2 VLPs to date: the RNA helicase A (RHA) dsRNA-binding domains (dsRBD1). Attempts to introduce additional linkers or empty coat subunits fail to augment the expression level or assembly of the MS2 VLPs displaying dsRBD1, affirming 91 aa as the upper threshold for exogenous protein presentation. By illuminating the precise confines of MS2 VLPs in accommodating distinct peptide lengths, our study informs the selection of appropriate peptide and protein dimensions. This revelation not only underscores the scope of MS2 VLPs but also establishes a pivotal reference point, facilitating the strategic manipulation of MS2 VLPs to design next-generation epitope/antibody-based therapeutics.


Asunto(s)
Proteínas de la Cápside , Péptidos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Péptidos/genética , Péptidos/química , Epítopos/genética
4.
Anal Methods ; 15(41): 5545-5552, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37847386

RESUMEN

Melatonin (MT), as a hormone regulating the rhythm of sleep, is widely used in health products. However, illicit and excessive use of MT might cause undesirable effects. Therefore, it is essential to establish highly sensitive and specific rapid methods for MT analysis in health products. In this study, we established indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for sensitive and selective detection of MT in health products. Under optimal conditions, half-maximum inhibitory concentration (IC50 value) and limit of detection (LOD, IC10 value) for MT by ic-ELISA were 0.25 ng mL-1 and 0.03 ng mL-1 respectively, while the IC50 and LOD of ic-CLEIA were lower at 0.17 ng mL-1 and 0.03 ng mL-1 respectively. Three MT-free Chinese patent medicines were spiked with MT and the recovery rates ranged from 71.89% to 117% (ic-ELISA) and 83.66% to 107.17% (ic-CLEIA). The level of MT in six MT-containing health products was assessed in parallel using the developed methods and HPLC. Both ic-ELISA and ic-CLEIA showed good consistencies (R2 = 0.999 and 0.993, respectively) with HPLC, indicating that the two methods developed were sensitive, fast, and reliable for application in MT analysis.


Asunto(s)
Melatonina , Mediciones Luminiscentes/métodos , Ensayo de Inmunoadsorción Enzimática/métodos
7.
Commun Biol ; 6(1): 80, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681763

RESUMEN

SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , Proteínas de la Nucleocápside/química , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Adenosina Trifosfato
8.
Commun Biol ; 5(1): 1315, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450893

RESUMEN

Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.


Asunto(s)
Ácidos Nucleicos , ARN , ADN de Cadena Simple , Proteínas de Unión al ADN , Adenosina Trifosfato
9.
Biophys Rev ; 14(3): 709-715, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35756710

RESUMEN

SARS-CoV-2 is the coronavirus causing the ongoing pandemic with > 460 millions of infections and > 6 millions of deaths. SARS-CoV-2 nucleocapsid (N) is the only structural protein which plays essential roles in almost all key steps of the viral life cycle with its diverse functions depending on liquid-liquid phase separation (LLPS) driven by interacting with various nucleic acids. The 419-residue N protein is highly conserved in all variants including delta and omicron, and composed of both folded N-/C-terminal domains (NTD/CTD) as well as three long intrinsically disordered regions (IDRs). Recent results have suggested that its CTD and IDRs are also cryptic nucleic acid-binding domains. In this context, any small molecules capable of interfering in its interaction with nucleic acids are anticipated to modulate its LLPS and associated functions. Indeed, ATP, the energy currency existing at very high concentrations (2-12 mM) in all living cells but absent in viruses, modulates LLPS of N protein, and consequently appears to be evolutionarily hijacked by SARS-CoV-2 to promote its life cycle. Hydroxychloroquine (HCQ) has been also shown to specifically bind NTD and CTD to inhibit their interactions with nucleic acids, as well as to disrupt LLPS. Particularly, the unique structure of the HCQ-CTD complex offers a promising strategy for further design of anti-SARS-CoV-2 drugs with better affinity and specificity. The finding may indicate that LLPS is indeed druggable by small molecules, thus opening up a promising direction for drug discovery/design by targeting LLPS in general.

10.
ACS Omega ; 7(3): 2798-2808, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097276

RESUMEN

The dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here, myricetin, a plant flavonoid, was characterized to noncompetitively inhibit the dengue protease. Further NMR study identified the protease residues perturbed by binding to myricetin, which were utilized to construct the myricetin-protease complexes. Strikingly, in the active form, myricetin binds to a new allosteric site (AS2) far away from the active site pocket and the allosteric site (AS1) for binding curcumin, while in the inactive form, it binds to both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by myricetin, we conducted molecular dynamics simulations on different forms of dengue NS2B-NS3 proteases. Unexpectedly, the binding of myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal ß-hairpin from the active site pocket. By contrast, the binding of myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore, myricetin represents the first small molecule, which allosterically inhibits the dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in the dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as myricetin and curcumin. As myricetin has been extensively used as a food additive, it might be directly utilized to fight the dengue infections and as a promising starting material for further design of potent allosteric inhibitors.

11.
Protein Sci ; 31(2): 345-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34734665

RESUMEN

SARS-CoV-2 nucleocapsid (N) protein plays essential roles in many steps of the viral life cycle, thus representing a key drug target. N protein contains the folded N-/C-terminal domains (NTD/CTD) and three intrinsically disordered regions, while its functions including liquid-liquid phase separation (LLPS) depend on the capacity in binding various viral/host-cell RNA/DNA of diverse sequences. Previously NTD was established to bind various RNA/DNA while CTD to dimerize/oligomerize for forming high-order structures. By NMR, here for the first time we decrypt that CTD is not only capable of binding S2m, a specific probe derived from SARS-CoV-2 gRNA but with the affinity even higher than that of NTD. Very unexpectedly, ATP, the universal energy currency for all living cells with high cellular concentrations (2-16 mM), specifically binds CTD with Kd of 1.49 ± 0.28 mM. Strikingly, the ATP-binding residues of NTD/CTD are identical in the SARS-CoV-2 variants while ATP and S2m interplay in binding NTD/CTD, as well as in modulating LLPS critical for the viral life cycle. Results together not only define CTD as a novel binding domain for ATP and nucleic acid, but enforce our previous proposal that ATP has been evolutionarily exploited by SARS-CoV-2 to complete its life cycle in the host cell. Most importantly, the unique ATP-binding pockets on NTD/CTD may offer promising targets for design of specific anti-SARS-CoV-2 molecules to fight the pandemic. Fundamentally, ATP emerges to act at mM as a cellular factor to control the interface between the host cell and virus lacking the ability to generate ATP.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Adenosina Trifosfato/metabolismo , Humanos , Unión Proteica , Dominios Proteicos , ARN Viral , SARS-CoV-2
12.
Chem Phys Lipids ; 240: 105136, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34529979

RESUMEN

Because of the negative side-effects of synthetic preservatives, the naturally-occurring polyphenols aroused intense interest of researchers. It has been suggested that chlorogenic acid (CA) and isochlorogenic acid A (iso-CAA) were good candidates to replace the synthetic preservatives. Moreover, the bactericidal activity of iso-CAA was stronger than CA, and the anti-bacterial activities of iso-CAA and CA were highly membrane-dependent. However, the mechanisms were still unclear. Therefore, in the present study, we investigated the mechanisms of the interactions between the two polyphenols and lipid bilayers through molecular dynamics simulations. The results revealed that iso-CAA could be inserted much deeper into POPG lipid bilayer than CA. We also found that hydrophobic interactions and hydrogen bonds both contributed to the insertion of iso-CAA into the POPG lipid bilayer, and the quinic acid moiety was the key structure in iso-CAA to form hydrogen bonds with POPG lipid bilayer. We believed that these findings would provide more useful information to explain the stronger bactericidal activity of iso-CAA than CA at the atomic level.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular
13.
Commun Biol ; 4(1): 714, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112944

RESUMEN

Mysteriously neurons maintain ATP concentrations of ~3 mM but whether ATP modulates TDP-43 LLPS remains completely unexplored. Here we characterized the effect of ATP on LLPS of TDP-43 PLD and seven mutants by DIC and NMR. The results revealed: 1) ATP induces and subsequently dissolves LLPS of TDP-43 PLD by specifically binding Arg saturated at 1:100. 2) ATP modifies the conformation-specific electrostatic property beyond just imposing screening effect. 3) Reversibility of LLPS of TDP-43 PLD and further exaggeration into aggregation appear to be controlled by a delicate network composed of both attractive and inhibitory interactions. Results together establish that ATP might be a universal but specific regulator for most, if not all, R-containing intrinsically-disordered regions by altering physicochemical properties, conformations, dynamics, LLPS and aggregation. Under physiological conditions, TDP-43 is highly bound with ATP and thus inhibited for LLPS, highlighting a central role of ATP in cell physiology, pathology and aging.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Proteínas de Unión al ADN/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Humanos , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Transición de Fase , Agregado de Proteínas , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Biophys Chem ; 274: 106592, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887572

RESUMEN

Previous studies suggested that naturally occurring EGCG primarily acted on the bacterial cell membrane then damaged the membrane and the gallate moiety in EGCG was very important to its anti-bacterial activity. However, the detailed mechanisms were still poorly understood. In this paper, EGCG and EGC were selected to study the great contribution of gallate moiety on the anti-bacterial activities of polyphenols. The results indicated that EGCG could penetrate deeper into the POPG lipid bilayer and possess more potent structure-perturbing potency on the POPG lipid bilayer than EGC. We also found that EGCG had the ability to form hydrogen bonds with the deeper inside oxygen atoms in the POPG lipid bilayer and the gallate moiety was the key functional group for EGCG forming hydrogen bonds with the POPG lipid bilayer. Moreover, results from the binding free energy analysis demonstrated that the gallate moiety made great contribution to the high affinity between EGCG and the POPG lipid bilayer. We believed that these findings could yield useful insights into the influence mechanisms of gallate moiety on the anti-bacterial activities of polyphenols.


Asunto(s)
Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Polifenoles/química , Té/química , Conformación Molecular , Termodinámica
15.
Sci Rep ; 11(1): 1034, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441818

RESUMEN

TDP-43 and hnRNPA1 contain tandemly-tethered RNA-recognition-motif (RRM) domains, which not only functionally bind an array of nucleic acids, but also participate in aggregation/fibrillation, a pathological hallmark of various human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), alzheimer's disease (AD) and Multisystem proteinopathy (MSP). Here, by DSF, NMR and MD simulations we systematically characterized stability, ATP-binding and conformational dynamics of TDP-43 and hnRNPA1 RRM domains in both tethered and isolated forms. The results reveal three key findings: (1) upon tethering TDP-43 RRM domains become dramatically coupled and destabilized with Tm reduced to only 49 °C. (2) ATP specifically binds TDP-43 and hnRNPA1 RRM domains, in which ATP occupies the similar pockets within the conserved nucleic-acid-binding surfaces, with the affinity slightly higher to the tethered than isolated forms. (3) MD simulations indicate that the tethered RRM domains of TDP-43 and hnRNPA1 have higher conformational dynamics than the isolated forms. Two RRM domains become coupled as shown by NMR characterization and analysis of inter-domain correlation motions. The study explains the long-standing puzzle that the tethered TDP-43 RRM1-RRM2 is particularly prone to aggregation/fibrillation, and underscores the general role of ATP in inhibiting aggregation/fibrillation of RRM-containing proteins. The results also rationalize the observation that the risk of aggregation-causing diseases increases with aging.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Motivo de Reconocimiento de ARN , Esclerosis Amiotrófica Lateral/metabolismo , Sitios de Unión , Clonación Molecular , Humanos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína , Espectrometría de Fluorescencia
16.
Biochem Biophys Res Commun ; 541: 50-55, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477032

RESUMEN

SARS-CoV-2 is a highly contagious coronavirus causing the ongoing pandemic. Very recently its genomic RNA of ∼30 kb was decoded to be packaged with nucleocapsid (N) protein into phase separated condensates. Interestingly, viruses have no ability to generate ATP but host cells have very high ATP concentrations of 2-12 mM. A key question thus arises whether ATP modulates liquid-liquid phase separation (LLPS) of the N protein. Here we discovered that ATP not only biphasically modulates LLPS of the viral N protein as we previously found on human FUS and TDP-43, but also dissolves the droplets induced by oligonucleic acid. Residue-specific NMR characterization showed ATP specifically binds the RNA-binding domain (RBD) of the N protein with the average Kd of 3.3 ± 0.4 mM. The ATP-RBD complex structure was constructed by NMR-derived constraints, in which ATP occupies a pocket within the positive-charged surface utilized for binding nucleic acids. Our study suggests that ATP appears to be exploited by SARS-CoV-2 to promote its life cycle by facilitating the uncoating, localizing and packing of its genomic RNA. Therefore the interactions of ATP with the viral RNA and N protein might represent promising targets for design of drugs and vaccines to terminate the pandemic.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Extracción Líquido-Líquido , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Adenosina Trifosfato/química , Sitios de Unión , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Viral/química , ARN Viral/genética , Motivos de Unión al ARN/genética , SARS-CoV-2/química
17.
QRB Discov ; 2: e13, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37529681

RESUMEN

SARS-CoV-2 nucleocapsid (N) protein plays the essential roles in key steps of the viral life cycle, thus representing a top drug target. Functionality of N protein including liquid-liquid phase separation (LLPS) depends on its interaction with nucleic acids. Only the variants with N proteins functional in binding nucleic acids might survive and spread in evolution and indeed, the residues critical for binding nucleic acids are highly conserved. Hydroxychloroquine (HCQ) was shown to prevent the transmission in a large-scale clinical study in Singapore but so far, no specific SARS-CoV-2 protein was experimentally identified to be targeted by HCQ. Here by NMR, we unambiguously decode that HCQ specifically binds NTD and CTD of N protein with Kd of 112.1 and 57.1 µM, respectively to inhibit their interaction with nucleic acid, as well as to disrupt LLPS. Most importantly, HCQ-binding residues are identical in SARS-CoV-2 variants and therefore HCQ is likely effective to different variants. The results not only provide a structural basis for the anti-SARS-CoV-2 activity of HCQ, but also renders HCQ to be the first known drug capable of targeting LLPS. Furthermore, the unique structure of the HCQ-CTD complex suggests a promising strategy for design of better anti-SARS-CoV-2 drugs from HCQ.

18.
ACS Omega ; 5(40): 25677-25686, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073093

RESUMEN

Flaviviruses including dengue virus and Zika virus encode a unique two-component NS2B-NS3 protease essential for maturation/infectivity, thus representing a key target for designing antiflavivirus drugs. Here, for the first time, by NMR and molecular docking, we reveal that curcumin allosterically inhibits the dengue protease by binding to a cavity with no overlap with the active site. Further molecular dynamics simulations decode that the binding of curcumin leads to unfolding/displacing the characteristic ß-hairpin of the C-terminal NS2B and consequently disrupting the closed (active) conformation of the protease. Our study identified a cavity most likely conserved in all flaviviral NS2B-NS3 proteases, which could thus serve as a therapeutic target for the discovery/design of small-molecule allosteric inhibitors. Moreover, as curcumin has been used as a food additive for thousands of years in many counties, it can be directly utilized to fight the flaviviral infections and as a promising starting for further design of potent allosteric inhibitors.

19.
Biochem Biophys Res Commun ; 524(2): 459-464, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32007267

RESUMEN

TDP-43 inclusion is a pathological hallmark for ∼97% ALS and ∼45% FTD patients. So far, >50 ALS-causing mutations have been identified, most of which are hosted by the intrinsically-disordered prion-like domain. The D169G mutation is the only one within the well-folded RRM1 domain, which, however, induces no significant change of the crystal structure and even slightly enhances the thermodynamic stability. Therefore, the mechanism for D169G to enhance the cytotoxicity remains elusive. Here by NMR, we reveal for the first time: 1) D169G does trigger significant dynamic changes for a cluster of residues. 2) Very unexpectedly, D169G disrupts the ATP-binding capacity of RRM1 although the ATP-binding pocket is on the back side of the mutation site. Taken together with our previous results, the current study provides a potential mechanism to rationalize enhancement of the TDP-43 cytotoxicity by D169G and highlights again the key roles of ATP in neurodegenerative diseases and ageing.


Asunto(s)
Adenosina Trifosfato/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Mutación Puntual , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos
20.
Biochem Biophys Res Commun ; 522(1): 247-253, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31759630

RESUMEN

ATP is the universal energy currency for all cells but has cellular concentrations of 2-12 mM, much higher than required for its classic functions. RNA-recognition motif (RRM) constitutes one of the most abundant domains in eukaryotes and most heterogeneous nuclear ribonucleoproteins (hnRNP) contain RRM domains which not only mediate direct interactions with nucleic acids, but whose aggregation/fibrillation is the pathological hallmark of various human diseases. Here, by NMR and molecular docking, ATP has been decoded to bind TDP-43 two tandem RRM domains with distinctive types of interactions, thus resulting in diverse affinities. Most strikingly, the binding of ATP enhances thermodynamic stability of TDP-43 RRM domains and inhibits ALS-/AD-associated fibrillation. Together, ATP is a cryptic binder of RRM-containing proteins which generally safeguards functional phase separation from transforming into pathological aggregation/fibrillation associated with various diseases and ageing. Our study thus reveals a mechanism of ATP to control protein homeostasis by specific binding.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios Proteicos , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...