Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 267: 116779, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288706

RESUMEN

In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.

2.
Food Chem ; 463(Pt 3): 141297, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305646

RESUMEN

To integrate antifouling properties and good sensitivity on the sensing interface can improve the applicability of an electrochemical immunosensor. These functional regions can be integrated into a single functional peptide (functPP). The rational designed three domains in functPP were the anchoring, antifouling and gold nanoparticles (AuNPs) recognizing domains. Meanwhile, the ordered AuNPs inspired by C15H23CO-RRRRR can be recognized by AuNPs recognizing domains in functPP to enhance the intensity of detecting current. In the sensing system, the anchoring domain in functPP can be immobilized on the Au electrode by AuS interaction, while the antifouling domain undergoes strong hydration with water molecules to resist matrices, and the recognizing domains can directionally capture O-AuNPs to form a functPP-O-AuNPs complex as the core sensing element. Consequently, the complex bound to the monoclonal antibodies against zearalenone by electrostatic adsorption to develop a highly antifouling and sensitive biosensor with the ability to identify zearalenone in cereals.

3.
Adv Healthc Mater ; : e2401199, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054675

RESUMEN

The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.

4.
BMC Plant Biol ; 24(1): 211, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519917

RESUMEN

Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.


Asunto(s)
Juglans , Juglans/genética , Ligasas/genética , Filogenia , Fitomejoramiento , Estrés Salino/genética
5.
Bioinorg Chem Appl ; 2024: 6618388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333411

RESUMEN

Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and in vitro toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.

6.
Medicine (Baltimore) ; 102(23): e33963, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335681

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a kind of disabling disease, given that the molecular mechanism of ONFH has not been elucidated, it is of significance to use bioinformatics analysis to understand the disease mechanism of ONFH and discover biomarkers. Gene set for ONFH GSE74089 was downloaded in the Gene Expression Omnibus, and "limma" package in R software was used to identify differentially expressed genes related to oxidative stress. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyze were performed for functional analysis. We constructed a protein interaction network and identified potential transcription factors and therapeutic drugs for the hub genes, and delineated the TF-hub genes network. Least absolute shrinkage and selection operator regression, support vector machine and cytoHubba were used to screen feature genes and key genes, which were validated by Receiver operating characteristic. CIBERSORT was used to explored the immune microenvironment. Subsequently, we identified the function of key genes using Gene set variation analysis and their relationship with each type of immune cell. Finally, molecular docking validated the binding association between molecules and validated genes. We detected 144 differentially expressed oxidative stress-related genes, and enrichment analysis showed that they were enriched in reactive oxygen species and AGE-RAGE signaling pathway. Protein-protein interaction and TF-hub genes network were conducted. Further exploration suggested that APOD and TMEM161A were feature genes, while TNF, NOS3 and CASP3 were key genes. Receiver operating characteristic analysis showed that APOD, CASP3, NOS3, and TNF have strong diagnostic ability. The key genes were enriched in oxidative phosphorylation. CIBERSORT analysis showed that 17 types immune cells were differentially relocated, and most of which were also closely related to key genes. In addition, genistein maybe potential therapeutic compound. In all, we identified that TNF, NOS3, and CASP3 played key roles on ONFH, and APOD, CASP3, NOS3, and TNF could serve as diagnostic biomarkers.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Humanos , Caspasa 3 , Necrosis de la Cabeza Femoral/genética , Simulación del Acoplamiento Molecular , Aprendizaje Automático , Biología Computacional
7.
Mikrochim Acta ; 190(5): 186, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071204

RESUMEN

To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs' residues in real milk samples, with results being consistent with HPLC-MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.


Asunto(s)
Anticuerpos Monoclonales , Nanopartículas , Animales , Leche/química , Sulfonamidas/análisis , Espectrometría de Masas en Tándem , Inmunoensayo/métodos , Sulfanilamida/análisis , Haptenos , Carbono
8.
Food Chem ; 407: 135175, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521388

RESUMEN

Production of high-affinity and specific antibodies to small molecules with molecular weight (MW) lower than 200 Da is challenging. Here, we designed a novel hapten, named hapten H6, for the detection of 3-methyl-quinoxaline-2-carboxylic acid (MQCA, MW of 189 Da), a residual marker of olaquindox, one of important veterinary antibiotics. The hapten H6 maintained all structural features of MQCA, especially in mulliken atomic charge distribution. Then, a monoclonal antibody (mAb) named 8C9 was obtained with an IC50 value of 0.2 µg/L, yielding a 15.5- to 88.5-fold improvement compared to previously prepared specific antibodies against MQCA. In addition, mAb 8C9 exhibited ignorable cross-reactivity with other structural analogs. Finally, a highly sensitive and specific indirect competitive ELISA based on mAb 8C9 was developed for the detection of MQCA in swine muscle and liver samples with limit of detection values of 0.04 µg/kg and 0.09 µg/kg, respectively.


Asunto(s)
Anticuerpos Monoclonales , Hígado , Animales , Porcinos , Anticuerpos Monoclonales/análisis , Inmunoensayo , Hígado/química , Músculos/química , Haptenos , Ensayo de Inmunoadsorción Enzimática
9.
Talanta ; 247: 123532, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609486

RESUMEN

In peptide amphiphile, The positively charged amino acid arginine can inspire the ordered self-assembly of gold nanocomposites (AuNPs), transfer positive charge to AuNPs, and weaken the aggregation of AuNPs by electrostatic repulsion, whereas hydrophobic fatty acid chains regulate the self-assembly of AuNPs through hydrophobic interaction, which may be a novel strategy to overcome disordered arrangement and aggregation of AuNPs to obtain an ultra-sensitive electrochemical immunosensor for determining the total aflatoxin amount. In this study, a peptide amphiphile (C14R5), composed of five arginine residues as the hydrophilic chain and myristic acid as the hydrophobic chain, inspired AuNPs to form monodispersed hollow raspberry-like AuNPs (rasAuNPs). rasAuNPs could captured and immobilized large amounts of aflatoxin antigens via the Au-S bonds, resulting in binding to more anti-aflatoxin antibodies. In the absence of aflatoxins, the enriched antigens bound to abundant antibodies, resulting in a low blank signal current. By contrast, in the presence of aflatoxins, enough antibodies could bind to the targets and less antibodies could recognize the antigens, increasing the detection signal intensity. Under the optimal conditions, the developed sensor demonstrated a wide linear range (0.13-29.06 pg mL-1) and a low limit of detection for total aflatoxins (0.05 pg mL-1) using a mixed standard (AFB1: AFB2: AFG1: AFG2 with a weight ratio of 1:1:1:1) in peanut, peanut milk, and maize powder samples. Hence, this novel strategy improves the sensitivity of electrochemical sensors and can be easily applied to detect other small molecule compound for the purpose of food safety.


Asunto(s)
Aflatoxinas , Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Aflatoxina B1/análisis , Arginina , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química , Nanocompuestos/química , Péptidos
10.
J Colloid Interface Sci ; 610: 313-320, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923269

RESUMEN

Dense tumor stroma is the physiological barrier in drug delivery that prevents anticancer drugs from entering the tumor, thereby seriously limiting the drugs' therapeutic effect. In this study, a Janus nanoplatform consisting of periodic mesoporous organosilica-coated platinum nanoplatforms (JPMO-Pt) and anti-stroma drug halofuginone (HF) (denoted as JPMO-Pt-HF), was developed to deplete the tumor stroma and synergistically treat breast cancer in BALB/c mice. The prepared JPMO-Pt had a uniform size of 245 nm, a good dispersion, an excellent in vitro and in vivo biocompatibility, and a high loading capacity for HF (up to 50 µg/mg). The antitumor experiments showed that the survival rate of 4 T1 cells exhibited an obvious downward trend when the cells were incubated with the JPMO-Pt-HF and irradiated with 808 nm laser. Moreover, the cell survival rate was only about 10% at 48 h when the HF concentration was 2.0 µg/mL. Notably, JPMO-Pt-HF under irradiation had an excellent synergistic therapeutic effect on tumor cells. In vivo antitumor experiment further showed that the JPMO-Pt-HF, in combination with laser irradiation, could minimize tumor growth, showing significantly better effects than those observed for the case of monotherapy involving photothermal therapy (PTT) (152 vs. 670 mm3, p < 0.0001) and HF (152 vs. 419 mm3, p = 0.0208). In addition, immunohistochemistry of tumor tissues indicated that JPMO-Pt-HF obviously reduced the relative collagen and α-smooth muscle actin (α-SMA) area fraction. Taken together, this research designs a new platform that not only possesses the ability to degrade the tumor matrix but also combines PTT and chemotherapeutic effects, and holds promise for effective tumor treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Animales , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Ratones Endogámicos BALB C , Fototerapia , Terapia Fototérmica , Piperidinas , Quinazolinonas
11.
ACS Appl Mater Interfaces ; 13(43): 51297-51311, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34668372

RESUMEN

Artificial nanomotors are undergoing significant developments in several biomedical applications. However, current experimental strategies for producing nanomotors still have inherent drawbacks such as the requirement for expensive equipment, strict controlling of experimental conditions, and strenuous processes with several complex procedures. In this study, we describe for the first time a facile single-step thermodynamic-controlled coating method to prepare Janus mesoporous organosilica nanomotors. By controlling the total free energy of organosilica oligomers (G) from a low development level to a high level in the reaction system, the nonspontaneous nucleation on the platinum (Pt) nanosurface and the spontaneous nucleation in a solvent can be controlled, respectively. More importantly, we reveal that the molecular arrangement and contact angle of deposited organosilica on Pt cores vary with the total free energy of organosilica oligomers (G). Different values of θ would change the trend of detachment from Pt for organosilica nucleated cores and carry out diverse coating modes. These are indicated by the morphology evolution of platinum/organosilica hybrids, from naked platinum nanoparticles, evenly distributed organosilica shell/core, nonconcentric to typical Janus nanomotor. The prepared Janus mesoporous nanomotor (JMN) showed typical mesopore structures and active propelling behaviors under H2O2 stimulation. In addition, the JMN modified with hyaluronic acid exhibited excellent biocompatibility and improved tumor penetration under H2O2 stimulation. The successful construction of other nanomotor frameworks based on a gold-templated core proves the perfect applicability of the thermodynamic-coating method for the production of nanomotors. In conclusion, this work establishes a manufacturing methodology for nanomotors and drives nanomotors for promising biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanopartículas/química , Platino (Metal)/química , Dióxido de Silicio/química , Termodinámica , Materiales Biocompatibles Revestidos/síntesis química , Humanos , Peróxido de Hidrógeno/química , Células MCF-7 , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
12.
Mol Ecol Resour ; 21(6): 2063-2076, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33817972

RESUMEN

Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).


Asunto(s)
Resistencia a la Enfermedad/genética , Evolución Molecular , Genoma de Planta , Juglans , Nematodos , Animales , China , Cromosomas de las Plantas , Juglans/genética , Juglans/parasitología , Familia de Multigenes , Nematodos/patogenicidad , Árboles
13.
Acta Pharm Sin B ; 10(9): 1719-1729, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33088691

RESUMEN

Photodynamic therapy (PDT) has been widely used in cancer treatment. However, hypoxia in most solid tumors seriously restricts the efficacy of PDT. To improve the hypoxic microenvironment, we designed a novel mesoporous platinum (mPt) nanoplatform to catalyze hydrogen peroxide (H2O2) within the tumor cells in situ without an extra enzyme. During the fabrication, the carboxy terminus of the photosensitizer chlorin e6 (Ce6) was connected to the amino terminus of the bifunctional mercaptoaminopolyglycol (SH-PEG-NH2) by a condensation reaction, and then PEG-Ce6 was modified onto the mPt moiety via the mercapto terminal of SH-PEG-NH2. Material, cellular and animal experiments demonstrated that Pt@PEG-Ce6 catalyzed H2O2 to produce oxygen (O2) and that Ce6 transformed O2 to generate reactive oxygen species (ROS) upon laser irradiation. The Pt@PEG-Ce6 nanoplatform with uniform diameter presented good biocompatibility and efficient tumor accumulation. Due to the high atomic number and good near-infrared absorption for Pt, this Pt@PEG-Ce6 nanoplatform showed computed tomography (CT) and photoacoustic (PA) dual-mode imaging ability, thus providing an important tool for monitoring the tumor hypoxic microenvironment. Moreover, the Pt@PEG-Ce6 nanoplatform reduced the expression of hypoxia-inducible factor-1α (HIF-1α) and programmed death-1 (PD-1) in tumors, discussing the relationship between hypoxia, PD-1, and PDT for the first time.

14.
J Colloid Interface Sci ; 570: 197-204, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32151829

RESUMEN

High-efficiency cancer treatment remains the main challenge at present. In this study, a mesoporous platinum nanoparticle- (mesoPt) based nanoplatform is exported for effective tumor treatment, integrating computed tomography (CT) imaging, photothermal conversion, and chemotherapeutic drug delivery capabilities. Mesoporous platinum nanoparticles are facilely synthesized by using Pluronic F127 as a structure-directing agent without seeds or organic reagents and have a spherical structure and uniform diameter of 94 nm. The surface of the mesoPt is modified with polyethylene glycol (PEG), and the prepared mesoPt-PEG shows excellent biocompatibility. Doxorubicin (Dox)-loaded PEG@Pt (PEG@Pt/Dox) is further prepared by electrostatic adsorption and the drug-loading capacity is as high as 25%. In vitro studies demonstrate that Dox can be controllably released from PEG@Pt/Dox in pH 5.5 phosphate buffered solution (PBS). Confocal imaging verifies that PEG@Pt/Dox can efficiently enter Dox-resistant breast cancer cells (MCF-7/ADR), deliver Dox into the cytoplasm when incubated for 1 h or 12 h, and release Dox into the nucleus when incubation is prolonged to 24 h. Cell transmission electron microscopy and flow cytometry also confirm that PEG@Pt/Dox could be internalized by cells. Upon irradiation by an 808 nm laser, the anticancer effect of PEG@Pt/Dox is significantly improved and kills approximately 84% of cancer cells when the concentration of Dox is 8 µg/mL. The killing efficacy of MCF-7/ADR cells is significantly higher in the combination group than in the monochemotherapy group. Hence, multifunctional nanoplatform PEG@Pt/Dox presents an effective strategy to realize efficient combination of chemotherapy and photothermals for drug-resistant cancer.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Nanopartículas del Metal/química , Fotoquimioterapia , Platino (Metal)/química , Antibióticos Antineoplásicos/química , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células MCF-7 , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
15.
RSC Adv ; 10(9): 5443-5453, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35498275

RESUMEN

The discharge of industrial printing and dyeing wastewater is one of the main reasons for the increasing water shortage and deterioration. The treatment of dyestuff wastewater is an issue and needs to be urgently solved. In this work, anionic ionic liquid functional covalent organic materials (COMs) were firstly synthesized and used for the selective adsorption of cationic dyes. First, a series of sulfonic acid group (SO3H)-functionalized anionic TpPa-SO3, TpBd-(SO3)2, and TpCR-(SO3)2 were prepared, respectively, and then imidazole was grafted onto TpBd-(SO3)2 to obtain ImI@TpBd-(SO3)2. The full characterization using X-ray diffraction, FT-IR spectroscopy, 13C cross-polarization magic-angle spinning NMR spectroscopy, zeta-potentials, BET surface and pore analysis indicated that these COMs and ImI@TpBd-(SO3)2 exhibited different morphologies, porosities, and potentials. The effects of the type of dye, adsorption time, initial dye concentration, and pH on the adsorption of dyes on ImI@TpBd-(SO3)2 were systematically investigated, respectively. The results revealed that ImI@TpBd-(SO3)2 possessed good adsorption performance for nine different cationic dyes with adsorption capacities in the range from 2865.3 mg g-1 for methylene blue (MB) to 597.9 mg g-1 for basic orange 2 (BO), but little adsorption for anionic and neutral dyes, revealing charge selectivity. The adsorption ratio of ImI@TpBd-(SO3)2 for MB was as high as 74.0% at 10 min by using 1.0 mg material, owing to the post modification of TpBd-(SO3)2 with imidazole. The adsorption of MB on ImI@TpBd-(SO3)2 was pH dependent. The adsorption isotherm and kinetics fitted well with the Freundlich and pseudo second-order kinetic model, respectively. Finally, the very outstanding advantages of superior selective adsorption, desorption, convenient preparation, and low density of ImI@TpBd-(SO3)2 predicted its research and application potential in dye wastewater recovery.

16.
Adv Healthc Mater ; 8(9): e1900039, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30838801

RESUMEN

Nanomaterial-based immunotherapy stimulating T cell activation or tumor-associated macrophage (TAM) conversion holds great promise for promoting tumor suppression. Herein, a novel nanoplatform, iron oxide-embedded large-pore mesoporous organosilica nanospheres (IO-LPMONs), is prepared for the first time to simultaneously activate cytotoxic T cells and polarize macrophages for potent tumor immunotherapy. The IO-LPMONs have large mesopores (6.3 nm) and inorganic-organic hybrid shells, which contribute to a high payload (500 µg mg-1 ) of the antigen ovalbumin (OVA). The IO-LPMONs effectively deliver OVA to dendritic cells (DCs) and activate DCs. Subsequently, high activation of both CD4+ and CD8+ effector antigen-specific T cells is achieved for powerful antitumor effects. Moreover, the IO-LPMONs also act as an immune modulator to polarize TAMs from an immunosuppressive M2 to a tumor-killing M1 phenotype, which induces efficient apoptosis of tumor cells. The combined T cell activation and macrophage polarization strategy based on the IO-LPMONs elicits remarkable combined antitumor effects in vivo, showing great promise for tumor treatment.


Asunto(s)
Células Dendríticas/citología , Compuestos Férricos/química , Macrófagos/citología , Macrófagos/metabolismo , Nanosferas/química , Linfocitos T Citotóxicos/citología , Animales , Linfocitos T CD8-positivos/citología , Línea Celular , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Células RAW 264.7
17.
J Colloid Interface Sci ; 539: 277-286, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590235

RESUMEN

In this work, near-infrared fluorescence (NIRF) and magnetic resonance (MR) dual-modality imaging probes are prepared by conjugating maleimide derivative cyanine dye (Mal-Cy5.5), gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), and RGD peptide (Mal-PEG2-RGD) on thioether-bridged mesoporous organosilica nanoparticles (MONs) via click reaction. Fourier transform infrared (FT-IR) spectra, zeta potentials, UV-vis spectra, and energy dispersive X-ray (EDX) spectrum confirm the successful modifications of the functional molecules on the MONs. The prepared MON-Gd-Cy5.5-RGD probes shows excellent NIRF and MR imaging properties, and the relaxivity rate (r1) is measured up to 2.85 mM-1 s -1. In addition, the MON-Gd-Cy5.5-RGD probes show excellent in vitro and in vivo biocompatibility. Confocal laser scanning microscopy and flow cytometry demonstrate that the MON-Gd-Cy5.5-RGD can efficiently target to MDA-MB-231 tumor cells. Additionally, ex vivo NIFR and in vivo MR imaging demonstrate that the MON-Gd-Cy5.5-RGD probes can accumulate in tumor and improve the signals of tumor.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Imagen por Resonancia Magnética , Nanopartículas/química , Imagen Óptica , Compuestos de Organosilicio/química , Línea Celular Tumoral , Colorantes Fluorescentes/química , Humanos , Rayos Infrarrojos , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
18.
J Colloid Interface Sci ; 538: 630-637, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554096

RESUMEN

The development of effective targeted therapies for triple negative breast cancer (TNBC) remains a challenge. This targeted drug delivery system used a near-infrared fluorescence dye cyanine 5.5 (Cy5.5) and an ICAM-1 antibody on thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs). The ICAM-1 antibody and cyanine 5.5-engineered PMOs (PMO-Cy5.5-ICAM) offer excellent in vivo and in vitro biocompatibility. The PMO-Cy5.5-ICAM shows a loading capacity up to 400 mg/g of doxorubicin (DOX). The drug release profile of the DOX-loaded targeted delivery system (DOX@PMO-Cy5.5-ICAM) is pH-sensitive. Confocal microscopy showed that the PMO-Cy5.5-ICAM efficiently targets and enters TNBC cells. In in vivo experiments, the DOX@PMO-Cy5.5-ICAM accumulates more in TNBCs than in the control groups and exhibits better therapeutic effects on TNBC; thus, it is a promising treatment strategy for TNBC.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Anticuerpos/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Molécula 1 de Adhesión Intercelular/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/química , Carbocianinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Compuestos de Organosilicio/química , Tamaño de la Partícula , Porosidad , Relación Estructura-Actividad , Propiedades de Superficie , Neoplasias de la Mama Triple Negativas/patología
19.
J Colloid Interface Sci ; 530: 302-311, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982022

RESUMEN

Herein, novel bifunctional smart films containing poly(styrene-butyl acrylate-ionic liquids) (P(S-BA-ILs)) and TiO2 were first prepared by a simple cast method and then used to demonstrate a superior bifunction of adsorption/desorption for dyes due to the property of reversible wettability switching and photodegradation under ultraviolet (UV) irradiation due to the addition of TiO2. The glass transition temperature (Tg) of P(S-BA-ILs) latex was characterized using a differential scanning calorimeter (DSC). The surface properties of films (P(S-BA-ILs)-TiO2) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), attenuated total (internal) reflection Fourier transform infrared spectroscopy (ATR-FTIR), and water contact angle (WCA) measurements. The results showed that the films displayed reversible wettability switching of hydrophobicity (124.5 ±â€¯2°)/hydrophilicity (10.5 ±â€¯2°) and hydrophobicity (35.1 ±â€¯2°)/hydrophilicity (93.1 ±â€¯2°) triggered by pH and temperature, respectively. Additionally, the films exhibited large adsorption capacities for pollutants at different pH: brilliant red (BR) (6.6 mg cm-3) at pH 1, methylene blue (MB) (12.4 mg cm-3) and phenol (1.1 g cm-3) at pH 11, and metal ions As, Mo and Sb (1.11, 1.57, and 1.25 mg cm-3) at pH 1, as well as superior reusability and excellent in situ photodegradation performance. The convenient preparation of the smart films as well as the good bifunction of adsorption and photodegradation for dyes predicts potential for application to curb water pollution.

20.
J Colloid Interface Sci ; 527: 33-39, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775819

RESUMEN

In the work, yolk-shell structured mesoporous organosilica nanoparticles (YSMONs) are successfully prepared by a mild alkalescent etching approach. The method is very convenient, in which mesostructured organosilica nanospheres are directly transformed into yolk-shell structures after etching with mild alkalescent solution (e.g. sodium carbonate solution). The prepared YSMONs have ethane-bridged frameworks, a monodisperse diameter (320 nm), a large pore volume (1.0 cm3 g-1), a uniform mesopore (2.4 nm) and a high surface area (1327 m2 g-1). In vitro cytotoxicity and hemolysis assays demonstrate the ethane-bridged YSMONs possess excellent biocompatibility and low hemolysis activity. In addition, the YSMONs show a high loading capacity up to 181 µg mg-1 for anti-cancer drug doxorubicin (DOX). Confocal laser scanning microscopy and flow cytometry analyses show that the DOX loaded YSMONs (YSMONs-DOX) can be effiectively internalized by multidurg resistant MCF-7/MDR human breast cancer cells. The chemotherapy against MCF-7/MDR cells demonstrate that the YSMONs-DOX possess higher therapeutic efficacy compared to that of free DOX, suggesting that the YSMONs synthesized by the mild alkalescent etching method have great promise as advanced nanoplatforms for biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA