Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Eur J Pharmacol ; 961: 176167, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939994

RESUMEN

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Ratas , Potenciales de Acción , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Glucemia/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Miocitos Cardíacos , Especies Reactivas de Oxígeno/metabolismo , Sodio/metabolismo
2.
Diabetol Metab Syndr ; 15(1): 217, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891701

RESUMEN

BACKGROUND: Glucose fluctuations (GF) are a risk factor for cardiovascular complications associated with type 2 diabetes. However, there is a lack of adequate research on the effect of GF on myocardial fibrosis and the underlying mechanisms in type 2 diabetes. This study aimed to investigate the impact of glucose fluctuations on myocardial fibrosis and explore the potential mechanisms in type 2 diabetes. METHODS: Sprague Dawley (SD) rats were randomly divided into three groups: the control (Con) group, the type 2 diabetic (DM) group and the glucose fluctuations (GF) group. The type 2 diabetic rat model was established using a high-fat diet combined with low-dose streptozotocin injection and the GF model was induced by using staggered glucose and insulin injections daily. After eight weeks, echocardiography was used to assess the cardiac function of the three groups. Hematoxylin-eosin and Masson staining were utilized to evaluate the degree of pathological damage and fibrosis. Meanwhile, a neonatal rat cardiac fibroblast model with GF was established. Western and immunofluorescence were used to find the specific mechanism of myocardial fibrosis caused by GF. RESULTS: Compared with rats in the Con and the DM group, cardiac function in the GF group showed significant impairments. Additionally, the results showed that GF aggravated myocardial fibrosis in vitro and in vivo. Moreover, Ca2+/calmodulin­dependent protein kinase II (CaMKII) was activated by phosphorylation, prompting an increase in phosphorylation of signal transducer and activator of transcription 3 (Stat3) and induced nuclear translocation. Pretreatment with KN-93 (a CaMKII inhibitor) blocked GF-induced Stat3 activation and significantly suppressed myocardial fibrosis. CONCLUSIONS: Glucose fluctuations exacerbate myocardial fibrosis by triggering the CaMKII/Stat3 pathway in type 2 diabetes.

3.
BMC Cardiovasc Disord ; 23(1): 474, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735624

RESUMEN

BACKGROUND: Diabetes is associated with myocardial fibrosis, while the underlying mechanisms remain elusive. The aim of this study is to investigate the underlying role of calcineurin/nuclear factor of activated T cell 3 (CaN/NFATc3) pathway and the Enhancer of zeste homolog 2 (EZH2) in diabetes-related myocardial fibrosis. METHODS: Streptozotocin (STZ)-injected diabetic rats were randomized to two groups: the controlled glucose (Con) group and the diabetes mellitus (DM) group. Eight weeks later, transthoracic echocardiography was used for cardiac function evaluation, and myocardial fibrosis was visualized by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with high-glucose medium with or without cyclosporine A or GSK126. The expression of proteins involved in the pathway was examined by western blotting. The nuclear translocation of target proteins was assessed by immunofluorescence. RESULTS: The results indicated that high glucose treatment increased the expression of CaN, NFATc3, EZH2 and trimethylates lysine 27 on histone 3 (H3K27me3) in vitro and in vivo. The inhibition of the CaN/NFATc3 pathway alleviated myocardial fibrosis. Notably, inhibition of CaN can inhibit the nuclear translocation of NFATc3, and the expression of EZH2 and H3K27me3 protein induced by high glucose. Moreover, treatment with GSK126 also ameliorated myocardial fibrosis. CONCLUSION: Diabetes can possibly promote myocardial fibrosis by activating of CaN/NFATc3/EZH2 pathway.


Asunto(s)
Calcineurina , Diabetes Mellitus Experimental , Animales , Ratas , Diabetes Mellitus Experimental/complicaciones , Proteína Potenciadora del Homólogo Zeste 2/genética , Fibroblastos , Glucosa , Histonas , Factores de Transcripción NFATC
4.
Diab Vasc Dis Res ; 20(4): 14791641231197107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37592725

RESUMEN

Background: Advanced glycation end products (AGEs) impair vascular physiology in Diabetes mellitus (DM). However, the underlying mechanisms remain unclear. Vascular large conductance calcium-activated potassium (BK) channels play important roles in coronary arterial function.Purpose: Our study aimed to investigate the regulatory role of AGEs in BK channels.Research Design: Using gavage of vehicle (V, normal saline) or aminoguanidine (A) for 8 weeks, normal and diabetic rats were divided into four groups: C+V group, DM+V group, C+A group, and DM+A group.Study Sample: Coronary arteries from different groups of rats and human coronary smooth muscle cells were used in this study.Data Collection and Analysis: Data were presented as mean ± SEM (standard error of mean). Student's t-test was used to compare data between two groups. One-way ANOVA with post-hoc LSD analysis was used to compare data between multiple groups.Results: Compared to the C+V group, vascular contraction induced by iberiotoxin (IBTX), a BK channel inhibitor, was impaired, and BK channel densities decreased in the DM+V group. However, aminoguanidine administration reduced the impairment. Protein expression of BK-ß1, phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein kinase B (PKB or Akt) were down-regulated, while F-box protein 32 (FBXO32) expression increased in the DM+V group and in high glucose (HG) cultured human coronary smooth muscle cells. Treatment with aminoguanidine in vitro and in vivo could reverse the above protein expression. The effect of aminoguanidine on the improvement of BK channel function by inhibiting the generation of AGEs was reversed by adding MK2206 (Akt inhibitor) or Compound C (AMPK inhibitor) in HG conditions in vitro.Conclusions: AGEs aggravate BK channel dysfunction via the AMPK/Akt/FBXO32 signaling pathway.


Asunto(s)
Vasos Coronarios , Diabetes Mellitus Experimental , Ratas , Humanos , Animales , Vasos Coronarios/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Productos Finales de Glicación Avanzada/metabolismo , Miocitos del Músculo Liso , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/farmacología
5.
Clin Cardiol ; 46(5): 567-573, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36951364

RESUMEN

BACKGROUND: This study's intent is to evaluate the usefulness of pattern matching filter (PMF) function combined with robotic magnetic navigation (RMN) in guiding the ablation of premature ventricular contractions (PVCs). HYPOTHESIS: Assume that PMF can improve the outcomes of PVCs ablation using RMN. METHODS: A retrospective analysis was completed consisting of 118 consecutive patients with PVCs who underwent radiofrequency ablation guided by RMN. According to the application of PMF, patients were divided into two groups: 20 patients underwent ablation without PMF (group A), and another 98 patients received ablation incorporating PMF (group B). RESULTS: Compared with group A, the procedure time (135.0 ± 28.3 min vs. 106.3 ± 37.9 min, p = 0.02) in group B was significantly decreased, while the X-ray exposure time (6.0 ± 2.6 min vs. 6.5 ± 3.6 min, p = 0.705) and dose (3.2 ± 2.4 gycm2 vs. 3.9 ± 2.7 gycm2 ,p = 0.208) had no significant difference. Group B had a more than twofold number of points acquired (66.9 ± 23.0 vs. 143.9 ± 68.3, p < 0.001) and required a shorter radiofrequency ablation time (13.2 ± 3.5 min vs. 8.1 ± 2.9 min, p < 0.001). There were no serious complications in either group. The acute success rate was similar [90.0% (18/20) vs. 87.8% (86/98), p = 1.000] in two groups, and the success rate was also similar in the long-term follow-up [83.3% (15/18) vs. 87.2% (75/86), p = 0.776]. CONCLUSIONS: The ablation of PVCs guided by RMN is safe and effective. Combined with the functional capability of PMF, both procedure time and radiofrequency ablation time were significantly decreased.


Asunto(s)
Ablación por Catéter , Ablación por Radiofrecuencia , Procedimientos Quirúrgicos Robotizados , Complejos Prematuros Ventriculares , Humanos , Complejos Prematuros Ventriculares/diagnóstico , Complejos Prematuros Ventriculares/cirugía , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Resultado del Tratamiento , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Fenómenos Magnéticos
6.
Front Cardiovasc Med ; 9: 748183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592403

RESUMEN

Background: Glucose fluctuations may be associated with myocardial fibrosis. This study aimed to investigate the underlying mechanisms of glucose fluctuation-related myocardial fibrosis. Methods: Streptozotocin (STZ)-injected type 1 diabetic rats were randomized to five groups: the controlled blood glucose (CBG) group, uncontrolled blood glucose (UBG) group, fluctuated blood glucose (FBG) group, FBG rats injected with 0.9% sodium chloride (NaCl) (FBG + NaCl) group, and FBG rats injected with MCC950 (FBG + MCC950) group. Eight weeks later, left ventricular function was evaluated by echocardiography and myocardial fibrosis was observed by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with different concentrations of glucose in vitro. Results: The left ventricular function was impaired and myocardial fibrosis was aggravated most significantly in the FBG group compared with the CBG and UBG groups. The levels of interleukin (IL)-1ß, IL-18, transforming growth factor-ß1 (TGF-ß1), collagen type 1 (collagen I), nuclear factor (NF)-κB, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome were significantly increased in the FBG group. In vitro, the inhibition of NF-κB and inflammasome reversed these effects. In vivo, NLRP3 inhibition with MCC950 reversed left ventricular systolic dysfunction and myocardial fibrosis induced by glucose fluctuations. Conclusion: Glucose fluctuations promote diabetic myocardial fibrosis by the NF-κB-mediated inflammasome activation.

7.
Front Cardiovasc Med ; 8: 777355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926624

RESUMEN

Background: The incidence of silent cerebral embolisms (SCEs) has been documented after pulmonary vein isolation using different ablation technologies; however, it is unreported in patients undergoing with atrial fibrillation (AF) ablation using Robotic Magnetic Navigation (RMN). The purpose of this prospective study was to investigate the incidence, risk predictors and probable mechanisms of SCEs in patients with AF ablation and the potential impact of RMN on SCE rates. Methods and Results: We performed a prospective study of 166 patients with paroxysmal or persistent AF who underwent pulmonary vein isolation. Patients were divided into RMN group (n = 104) and manual control (MC) group (n = 62), and analyzed for their demographic, medical, echocardiographic, and risk predictors of SCEs. All patients underwent cerebral magnetic resonance imaging within 48 h before and after the ablation procedure to assess cerebral embolism. The incidence and potential risk factors of SCEs were compared between the two groups. There were 26 total cases of SCEs in this study, including 6 cases in the RMN group and 20 cases in the MC group. The incidences of SCEs in the RMN group and the MC group were 5.77 and 32.26%, respectively (X2 = 20.63 P < 0.05). Univariate logistic regression analysis demonstrated that ablation technology, CHA2DS2-VASc score, history of cerebrovascular accident/transient ischemic attack, and low ejection fraction were significantly associated with SCEs, and multivariate logistic regression analysis showed that MC ablation was the only independent risk factor of SCEs after an AF ablation procedure. Conclusions: Ablation technology, CHA2DS2-VASc score, history of cerebrovascular accident/transient ischemic attack, and low ejection fraction are associated with SCEs. However, ablation technology is the only independent risk factor of SCEs and RMN can significantly reduce the incidence of SCEs resulting from AF ablation. Clinical Trial Registration: ChiCTR2100046505.

8.
J Mol Cell Cardiol ; 145: 14-24, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32511969

RESUMEN

Glucose fluctuations may contribute to large conductance calcium activated potassium (BK) channel dysfunction. However, the underlying mechanisms remain elusive. The aim of this study was to investigate the molecular mechanisms involved in BK channel dysfunction as a result of glucose fluctuations. A rat diabetic model was established through the injection of streptozotocin. Glucose fluctuations in diabetic rats were induced via consumption and starvation. Rat coronary arteries were isolated and coronary vascular tensions were measured after three weeks. Rat coronary artery smooth muscle cells were isolated and whole-cell BK channel currents were recorded using a patch clamp technique. Human coronary artery smooth muscle cells in vitro were used to explore the underlying mechanisms. After incubation with iberiotoxin (IBTX), the Δ tensions (% Max) of rat coronary arteries in the controlled diabetes mellitus (C-DM), the uncontrolled DM (U-DM) and the DM with glucose fluctuation (GF-DM) groups were found to be 84.46 ± 5.75, 61.89 ± 10.20 and 14.77 ± 5.90, respectively (P < .05), while the current densities of the BK channels in the three groups were 43.09 ± 4.35 pA/pF, 34.23 ± 6.07 pA/pF and 17.87 ± 4.33 pA/pF, respectively (P < .05). The Δ tensions (% Max) of rat coronary arteries after applying IBTX in the GF-DM rats injected with 0.9% sodium chloride (NaCl) (GF-DM + NaCl) and the GF-DM rats injected with N-acetyl-L-cysteine (NAC) (GF-DM + NAC) groups were found to be 8.86 ± 1.09 and 48.90 ± 10.85, respectively (P < .05). Excessive oxidative stress and the activation of protein kinase C (PKC) α and nuclear factor (NF)-κB induced by glucose fluctuations promoted the decrease of BK-ß1 expression, while the inhibition of reactive oxygen species (ROS), PKCα, NF-κB and muscle ring finger protein 1 (MuRF1) reversed this effect. Glucose fluctuations aggravate BK channel dysfunction via the ROS overproduction and the PKCα/NF-κB/MuRF1 signaling pathway.


Asunto(s)
Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Glucosa/toxicidad , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , FN-kappa B/metabolismo , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Humanos , Insulina/metabolismo , Malondialdehído/sangre , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Subunidades de Proteína/metabolismo , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
J Vasc Res ; 57(1): 24-33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31715615

RESUMEN

AIM: Glucose fluctuations may be responsible for, or further the onset of arterial hypertension, but the exact mechanisms remain unclear. The purpose of this study was to investigate the mechanisms behind and related to aortic fibrosis and aortic stiffening induced by glucose fluctuations. METHODS: Sprague-Dawley rats were injected with streptozotocin (STZ) and randomly divided into three treatment groups: controlled STZ-induced diabetes (C-STZ); uncontrolled STZ-induced diabetes (U-STZ); and STZ-induced diabetes with glucose fluctuations (STZ-GF). After 3 weeks, rat blood pressure (BP) was tested, and aortic fibrosis was detected by using the Masson trichrome staining technique. Levels of p38 mitogen-activated protein kinase (p38 MAPK), runt-related transcription factor 2 (Runx2), collagen type 1 (collagen I), and NADPH oxidases were determined by Western blot.Rat vascular smooth muscle cells in vitro were used to explore underlying mechanisms. RESULTS: The systolic BP of diabetic rats in the C-STZ, U-STZ, and STZ-GF groups was 127.67 ± 6.53, 150.03 ± 5.24, and 171.63 ± 3.53 mm Hg, respectively (p< 0.05). The mean BP of diabetic rats in the three groups was 91.20 ± 10.07, 117.29 ± 4.28, and 140.58 ± 2.14 mm Hg, respectively (p< 0.05). The diastolic BP of diabetic rats in the three groups was 73.20 ± 12.63, 101.93 ± 5.79, and 125.37 ± 4.62 mm Hg, respectively (p< 0.05). The ratios of fibrosis areas in the aortas of the three groups were 11.85 ± 1.23, 29.00 ± 0.87, and 48.36 ± 0.55, respectively (p< 0.05). The expressions of p38 MAPK, Runx2, and collagen I were significantly increased in the STZ-GF group. In vitro, applications of inhibitors of reactive oxygen species (ROS) and p38 MAPK successfully reversed glucose fluctuations that would have possibly induced aortic fibrosis. CONCLUSIONS: Blood glucose fluctuations aggravate aortic fibrosis via affecting the ROS/p38 MAPK /Runx2 signaling pathway.


Asunto(s)
Aorta/patología , Glucemia/análisis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Presión Sanguínea , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Fibrosis , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estreptozocina
10.
Artículo en Inglés | MEDLINE | ID: mdl-31620092

RESUMEN

Accumulating evidence indicates the occurrence and development of diabetic complications relates to not only constant high plasma glucose, but also glucose fluctuations which affect various kinds of molecular mechanisms in various target cells and tissues. In this review, we detail reactive oxygen species and their potentially damaging effects upon glucose fluctuations and resultant downstream regulation of protein signaling pathways, including protein kinase C, protein kinase B, nuclear factor-κB, and the mitogen-activated protein kinase signaling pathway. A deeper understanding of glucose-fluctuation-related molecular mechanisms in the development of diabetic complications may enable more potential target therapies in future.

11.
Medicine (Baltimore) ; 98(10): e14715, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30855465

RESUMEN

Several reports have suggested a possible association between the interleukin (IL)-8-251A/T single-nucleotide polymorphism (SNP) and the susceptibility to coronary artery disease (CAD). Due to inconclusive results of the studies so far, we conducted a meta-analysis to systematically summarize the studies on the association between this SNP and CAD risk. A systematic literature search identified 9 case-control studies (3752 cases and 4219 controls) on the IL-8-251A/T polymorphism. We observed a significant association between different genetic forms of -251A/T SNP and CAD risk, like the allele model (A vs T: odds ratio [OR] 1.14, 95% confidence interval [CI] 1.02-1.27, P = .02), dominant model (AA + AT vs TT: OR 1.20, 95% CI 1.01-1.43, P = .042), recessive model (AA vs AT + TT: OR 1.15, 95% CI 1.03-1.27, P = .01), and homozygous model (AA vs TT: OR 1.26, 95% CI 1.01-1.56, P = .037), whereas the heterozygote model did not show any significant association (AT vs TT: OR 1.16, 95% CI 0.98-1.38, P = .091). Furthermore, significant heterogeneity was observed among studies in terms of all genetic models, except the recessive model. Analysis of the ethnic subgroups revealed a significantly higher risk of CAD in the East Asian population carrying this SNP, and the heterogeneity among the studies regarding the East Asian population was decreased after subgroup analysis. The results of this meta-analysis suggest that the IL-8-251A/T SNP may increase the risk of CAD, especially in people of East Asian ethnicity. Further large-scale, multicenter epidemiological studies are warranted to validate this finding.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Interleucina-8/genética , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/etnología , Etnicidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple
12.
Clin Cardiol ; 42(4): 418-424, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30652336

RESUMEN

BACKGROUND: No data exist on comparisons of efficacy, safety, and recurrence risk factors of paroxysmal and persistent atrial fibrillation (AF) ablation using robotic magnetic navigation system (MNS), respectively. METHODS: About 151 AF patients were prospectively enrolled and divided into paroxysmal AF group (n = 102) and persistent AF group (n = 49). Circumferential pulmonary vein antrum isolation (CPVI) was performed in all patients. Linear ablation at the left atrial roof and mitral isthmus was performed in patients with persistent AF in addition to CPVI. The procedural time, X-ray exposure time, acute and long-term success rates of CPVI, and procedure-related complications were analyzed. The AF recurrence rates in the two groups were compared during 1 year, and Cox regression was used to analyze the recurrence risk factors. RESULTS: The acute success rates of CPVI in the two groups were 98.04% and 97.96%, respectively. There were no significant differences in the procedural time, X-ray exposure time, and ablation time between the two groups (P > 0.05). No serious complications appeared in either group. The AF ablation success rates were 70.6% and 57.1% for the paroxysmal and persistent groups respectively at 12-month follow-up (P = 0.102). AF duration and coronary heart disease prior to ablation were associated with the higher AF recurrence in patients with persistent AF. CONCLUSION: Ablation using MNS is effective and safe both in patients with paroxysmal and persistent AF. AF duration and coronary heart disease prior to ablation are two independent risk factors of AF recurrence in patients with persistent AF postoperatively.


Asunto(s)
Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/fisiología , Venas Pulmonares/cirugía , Robótica/instrumentación , Cirugía Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Ecocardiografía , Diseño de Equipo , Femenino , Estudios de Seguimiento , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Recurrencia , Factores de Riesgo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Adulto Joven
13.
Front Pharmacol ; 9: 223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636681

RESUMEN

Aim: Docosahexaenoic acid (DHA) is known to activate the vascular large-conductance calcium-activated potassium (BK) channels and has protective effects on the cardiovascular system. However, the underlying mechanisms through which DHA activates BK channels remain unclear. In this study, we determined such mechanisms by examining the effects of different concentrations of DHA on BK channels in freshly isolated rat coronary arterial smooth muscle cells (CASMCs) using patch clamp techniques. Methods and Results: We found that BK channels are the major potassium currents activated by DHA in rat CASMCs and the effects of DHA on BK channels are concentration dependent with a bimodal distribution. At concentrations of <1 µM, DHA activated whole-cell BK currents with an EC50 of 0.24 ± 0.05 µM and the activation effects were abolished by pre-incubation with SKF525A (10 µM), a cytochrome P450 (CYP) epoxygenase inhibitor, suggesting the role of DHA-epoxide. High concentrations of DHA (1-10 µM) activated whole-cell BK currents with an EC50 of 2.38 ± 0.22 µM and the activation effects were unaltered by pre-incubation with SKF525A. Single channel studies showed that the open probabilities of BK channels were unchanged in the presence of low concentrations of DHA, while significantly increased with high concentrations of DHA. In addition, DHA induced a dose-dependent increase in cytosolic calcium concentrations with an EC50 of 0.037 ± 0.01 µM via phospholipase C (PLC)-inositol triphosphate (IP3)-Ca2+ signal pathway, and inhibition of this pathway reduced DHA-induced BK activation. Conclusion: These results suggest that DHA can activate BK channels by multiple mechanisms. Low concentration DHA-induced BK channel activation is mediated through CYP epoxygenase metabolites, while high concentration DHA can directly activate BK channels. In addition, DHA at low and high concentrations can both activate BK channels by elevated cytosolic calcium through the PLC-IP3-Ca2+ signal pathway.

14.
Cardiol Res Pract ; 2018: 3096261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622820

RESUMEN

OBJECTIVE: The objective of this study was to investigate the impact of left atrial (LA) size for the ablation of atrial fibrillation (AF) using remote magnetic navigation (RMN). METHODS: A total of 165 patients with AF who underwent catheter ablation using RMN were included. The patients were divided into two groups based on LA diameter. Eighty-three patients had small LA (diameter <40 mm; Group A), and 82 patients had a large LA (diameter ≥40 mm; Group B). RESULTS: During mapping and ablation, X-ray time (37.0 (99.0) s vs. 12 (30.1) s, P < 0.001) and X-ray dose (1.4 (2.7) gy·cm2 vs. 0.7 (2.1) gy·cm2, P=0.013) were significantly higher in Group A. No serious complications occurred in any of the patients. There was no statistical difference in the rate of first anatomical attempt of pulmonary vein isolation between the two groups (71.1% vs. 57.3%, P=0.065). However, compared with Group B, the rate of sinus rhythm was higher (77.1% vs. 58.5%, P < 0.001) during the follow-up period. More patients in Group A required a sheath adjustment (47/83 vs. 21/82, P < 0.001), presumably due to less magnets positioned outside of the sheath. In vitro experiments with the RMN catheter demonstrated that only one magnet exposed created the sheath affects which influenced the flexibility of the catheter. CONCLUSIONS: AF ablation using RMN is safe and effective in both small and large LA patients. Patients with small LA may pose a greater difficulty when using RMN which may be attributed to the fewer magnets beyond the sheath. As a result, the exposure of radiation was increased. This study found that having at least two magnets of the catheter positioned outside of the sheath can ensure an appropriate flexibility of the catheter.

15.
J Vasc Res ; 54(6): 329-343, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29040972

RESUMEN

AIM: The objective of this study was to examine the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on coronary arterial large conductance Ca2+-activated K+ (BK) channel function in coronary smooth muscle cells (SMCs) of streptozotocin-induced diabetic rats. METHODS: The effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on coronary BK channel open probabilities were determined using the patch clamp technique. The mRNA and protein expressions of BK channel subunits were measured using qRT-PCR and Western blots. The coronary artery tension and coronary SMC Ca2+ concentrations were measured using a myograph system and fluorescence Ca2+ indicator. RESULTS: Compared to nondiabetic control rats, the BK channel function was impaired with a reduced response to EPA and DHA in freshly isolated SMCs of diabetic rats. Oral administration of n-3 PUFAs had no effects on protein expressions of BK channel subunits in nondiabetic rats, but significantly enhanced those of BK-ß1 in diabetic rats without altering BK-α protein levels. Moreover, coronary ring tension induced by iberiotoxin (a specific BK channel blocker) was increased and cytosolic Ca2+ concentrations in coronary SMCs were decreased in diabetic rats, but no changes were found in nondiabetic rats. CONCLUSIONS: n-3 PUFAs protect the coronary BK channel function and coronary vasoreactivity in diabetic rats as a result of not only increasing BK-ß1 protein expressions, but also decreasing coronary artery tension and coronary smooth muscle cytosolic Ca2+ concentrations.


Asunto(s)
Enfermedad de la Arteria Coronaria/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Angiopatías Diabéticas/prevención & control , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Ratas Sprague-Dawley , Factores de Tiempo
16.
Plasmid ; 66(1): 19-25, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21426917

RESUMEN

Albumin microbubbles have been intensively studied for their application in gene delivery. However, with negative surface potential, albumin microbubbles hardly bind plasmid DNA, which might contribute to their low transgene efficiency. In this study, we developed polyethylenimine (PEI) coated albumin microbubbles (PAMB) which were prepared by sonicating the mixture of human albumin, PEI, polyethylene glycol and glucose. CHO cells, COS cells and 293T cells were transfected with PEI, PEI+albumin, PAMB and Lipofectamine 2000, respectively. Our results showed that the surface potential was elevated and PAMB could bind plasmid DNA. The transgene efficiency of PAMB was higher than PEI and PEI+albumin (P<0.05), and PAMB performed the same transgene effect as Lipofectamine 2000 did but with lower cytotoxicity than Lipofectamine 2000. Albumin microbubbles modified by PEI has high transgene efficiency and low cytotoxicity even without ultrasound medication, making it a useful non-virus gene delivery method in vitro.


Asunto(s)
Albúminas/química , ADN/administración & dosificación , Vectores Genéticos , Microburbujas , Polietileneimina/química , Transfección/métodos , Animales , Células CHO , Células COS , Proliferación Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Fluorocarburos , Células HEK293 , Humanos , Lípidos/toxicidad , Plásmidos/genética , Polietilenglicoles/química , Polietileneimina/toxicidad , Sonicación , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...