Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Thromb J ; 21(1): 108, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864173

RESUMEN

BACKGROUND: Hemophilia A (HEMA) is an X-linked bleeding disorder caused by reduced/absent coagulation factor VIII expression, as a result of pathogenic variants in the F8 gene. Preimplantation prevention of HEMA should ideally include direct pathogenic F8 variant detection, complemented by linkage analysis of flanking markers to identify the high-risk F8 allele. Linkage analysis is particularly indispensable when the pathogenic variant cannot be detected directly or identified. This study evaluated the suitability of a panel of F8 intragenic and extragenic short tandem repeat markers for standalone linkage-based preimplantation genetic testing for monogenic disorder (PGT-M) of the Inv22 pathogenic variant, an almost 600 kb paracentric inversion responsible for almost half of all severe HEMA globally, for which direct detection is challenging. METHODS: Thirteen markers spanning 1 Mb and encompassing both F8 and the Inv22 inversion interval were genotyped in 153 unrelated females of Viet Kinh ethnicity. RESULTS: All individuals were heterozygous for ≥ 1 marker, ~ 90% were heterozygous for ≥ 1 of the five F8 intragenic markers, and almost 98% were heterozygous for ≥ 1 upstream (telomeric) and ≥ 1 downstream (centromeric) markers. A prospective PGT-M couple at risk of transmitting F8 Inv22 were fully informative at four marker loci (2 intra-inversion, 1 centromeric, 1 telomeric) and partially informative at another five (2 intra-inversion, 3 centromeric), allowing robust phasing of low- and high-risk haplotypes. In vitro fertilization produced three embryos, all of which clearly inherited the low-risk maternal allele, enabling reliable unaffected diagnoses. A single embryo transfer produced a clinical pregnancy, which was confirmed as unaffected by amniocentesis and long-range PCR, and a healthy baby girl was delivered at term. CONCLUSION: Robust and reliable PGT-M of HEMA, including the common F8 Inv22 pathogenic variant, can be achieved with sufficient informative intragenic and flanking markers.

2.
Open Access Maced J Med Sci ; 7(24): 4427-4431, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-32215107

RESUMEN

BACKGROUND: Aneuploidy is a major cause of miscarriages and implantation failure. Preimplantation genetic testing for aneuploidy (PGT-A) by Next Generation Sequencing (NGS) is able to detect of the numeral and structural chromosomal abnormalities of embryos in vitro fertilization (IVF). AIM: This study was aimed to assess the relationship between maternal age and chromosomal abnormalities NGS technology. METHODS: A group of 603 human trophectoderm (TE) biopsied samples were tested by Veriseq kit of Illumina. The relation of marternal age and chromosomal abnormality of blastocyst embryo was evaluated. RESULTS: Among the 603 TE samples, 247 samples (42.73%) presented as chromosomal abnormalities. The abnormalities occurred to almost chromosomes, and the most popular aneuploidy observed is 22. Aneuploidy rate from 0.87% in chromosome 11 to 6.06% in chromosome 22. The rate of abnormal chromosome increased dramatically in group of mother's ages over 37 (54.17%) comparing to group of mother's ages less than 37 (38.05%) (p < 0.000). The Abnormal chromosome and maternal age has a positive correlation with r = 0.4783 (p<0.0001). CONCLUSION: These results showed high rate abnormal chromosome and correlated with advanced maternal age of blastocyst embryos.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...