Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Hum Behav ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724650

RESUMEN

Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.

2.
Nat Hum Behav ; 8(2): 361-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945807

RESUMEN

Anxiety disorders are the most prevalent mental disorders. However, the genetic etiology of anxiety disorders remains largely unknown. Here we conducted a genome-wide meta-analysis on anxiety disorders by including 74,973 (28,392 proxy) cases and 400,243 (146,771 proxy) controls. We identified 14 risk loci, including 10 new associations near CNTNAP5, MAP2, RAB9BP1, BTN1A1, PRR16, PCLO, PTPRD, FARP1, CDH2 and RAB27B. Functional genomics and fine-mapping pinpointed the potential causal variants, and expression quantitative trait loci analysis revealed the potential target genes regulated by the risk variants. Integrative analyses, including transcriptome-wide association study, proteome-wide association study and colocalization analyses, prioritized potential causal genes (including CTNND1 and RAB27B). Evidence from multiple analyses revealed possibly causal genes, including RAB27B, BTN3A2, PCLO and CTNND1. Finally, we showed that Ctnnd1 knockdown affected dendritic spine density and resulted in anxiety-like behaviours in mice, revealing the potential role of CTNND1 in anxiety disorders. Our study identified new risk loci, potential causal variants and genes for anxiety disorders, providing insights into the genetic architecture of anxiety disorders and potential therapeutic targets.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Animales , Predisposición Genética a la Enfermedad/genética , Genómica , Sitios de Carácter Cuantitativo/genética , Trastornos de Ansiedad/genética
3.
J Psychiatr Res ; 163: 372-377, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37267734

RESUMEN

MicroRNAs have pivotal roles in gene regulation. However, microRNAs that have causal effects on schizophrenia remain largely unknown. To investigate the causal relationships between microRNAs and schizophrenia, here we conduct a Mendelian randomization (MR) study. The genome-wide association study (GWAS) of schizophrenia (67,390 cases and 94,015 controls) from PGC3 were used as the outcome. Genetic variants associated with microRNAs were used as exposure in MR analysis. We identified 6 microRNAs that showed causality on schizophrenia. These microRNAs include hsa-miR-570-3p (OR = 1.03, 95% confidence interval (CI): 1.02 to 1.05, P = 5.45 × 10-5), hsa-miR-550a-3p (OR = 1.12, 95% CI: 1.06 to 1.18, P = 5.99 × 10-5), hsa-miR-130a-3p (OR = 1.10, 95% CI: 1.05 to 1.15, P = 1.58 × 10-4), hsa-miR-210 (OR = 0.87, 95% CI: 0.82 to 0.93, P = 3.09 × 10-5), hsa-miR-337-3p (OR = 1.01, 95% CI: 1.01 to 1.02, P = 3.39 × 10-4), and hsa-miR-130b-3p (OR = 0.89, 95% CI: 0.84 to 0.94, P = 1.50 × 10-5). Differential expression analysis showed dysregulation of hsa-miR-130b-3p in schizophrenia cases compared with controls. Gene Ontology (GO) analysis showed that the targets of these causal microRNAs were significantly enriched in RNA splicing pathways. This MR study identified six microRNAs whose genetically regulated expression might have a causal role in schizophrenia, indicating the causality of these microRNAs in schizophrenia. Our findings also indicate that these microRNAs may be used as potential biomarkers for schizophrenia.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Esquizofrenia/genética , MicroARNs/genética , Regulación de la Expresión Génica , Perfilación de la Expresión Génica
4.
Hum Genet ; 142(6): 809-818, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37085628

RESUMEN

Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.


Asunto(s)
Trastorno Bipolar , Trastornos Mentales , Animales , Proteoma/genética , Proteoma/metabolismo , Análisis de la Aleatorización Mendeliana , Trastornos Mentales/genética , Trastorno Bipolar/genética , Proteínas Sanguíneas , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
5.
Mol Neurobiol ; 60(3): 1537-1546, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36517655

RESUMEN

Multiple integrative studies have been performed to identify the potential target genes of the non-coding schizophrenia (SCZ) risk variants. However, all the integrative studies used expression quantitative trait loci (eQTL) data from bulk tissues. Considering the cell type-specific regulatory effect of many genetic variants, it is important to conduct integrative studies using cell type-specific eQTL data. Here, we conduct a Mendelian randomization (MR) study by integrating genome-wide associations of SCZ (74,776 cases and 101,023 controls) and eQTL data (N = 215) from dopaminergic neurons, which were differentiated from human-induced pluripotent stem cell (iPSC) lines. For eQTL from young post-mitotic dopaminergic neurons (differentiation of iPSC for 30 days, D30), we identified 34 genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Among which, ARL3 showed the most significant associations with SCZ. For eQTL from more mature dopaminergic neurons (D52), we identified 37 potential SCZ causal genes, and ARL3 and GNL3 showed the most significant associations. Only 12 genes showed significant associations with SCZ in both D30 and D52 eQTL datasets, indicating the time point-specific genetic regulatory effects in young post-mitotic dopaminergic neurons and more mature dopaminergic neurons. Comparing the results from dopaminergic neurons with bulk brain tissues prioritized 2 high-confidence risk genes, including DDHD2 and GALNT10. Our study identifies multiple risk genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Further mechanistic investigation will provide pivotal insights into SCZ pathophysiology.


Asunto(s)
Sitios de Carácter Cuantitativo , Esquizofrenia , Humanos , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/genética , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Neuronas Dopaminérgicas , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética , Proteínas Nucleares/genética , Proteínas de Unión al GTP/genética , Fosfolipasas/genética
6.
Brain ; 146(4): 1403-1419, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36152315

RESUMEN

Genome-wide association studies have identified 10q24.32 as a robust schizophrenia risk locus. Here we identify a regulatory variant (rs10786700) that disrupts binding of transcription factors at 10q24.32. We independently confirmed the association between rs10786700 and schizophrenia in a large Chinese cohort (n = 11 547) and uncovered the biological mechanism underlying this association. We found that rs10786700 resides in a super-enhancer element that exhibits dynamic activity change during the development process and that the risk allele (C) of rs10786700 conferred significant lower enhancer activity through enhancing binding affinity to repressor element-1 silencing transcription factor (REST). CRISPR-Cas9-mediated genome editing identified SUFU as a potential target gene by which rs10786700 might exert its risk effect on schizophrenia, as deletion of rs10786700 downregulated SUFU expression. We further investigated the role of Sufu in neurodevelopment and found that Sufu knockdown inhibited proliferation of neural stem cells and neurogenesis, affected molecular pathways (including neurodevelopment-related pathways, PI3K-Akt and ECM-receptor interaction signalling pathways) associated with schizophrenia and altered the density of dendritic spines. These results reveal that the functional risk single nucleotide polymorphism rs10786700 at 10q24.32 interacts with REST synergistically to regulate expression of SUFU, a novel schizophrenia risk gene which is involved in schizophrenia pathogenesis by affecting neurodevelopment and spine morphogenesis.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fosfatidilinositol 3-Quinasas/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética
7.
Mov Disord ; 37(12): 2451-2456, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177513

RESUMEN

BACKGROUND: Large-scale genome-wide association studies (GWASs) have reported multiple risk variants for Parkinson's disease (PD). However, little is known about how these reported risk variants confer risk of PD. OBJECTIVE: To nominate genes whose genetically regulated expression in dopaminergic neurons may have a causal role in PD. METHODS: We conducted a two-sample Mendelian randomization (MR) study by integrating large-scale genome-wide associations and expression quantitative trait loci (eQTL) data from dopaminergic neurons. RESULTS: MR analysis nominated 10 risk genes whose genetically regulated expression in dopaminergic neurons may have a causal role in PD. These MR significant genes include FAM200B, NDUFAF2, NUP42, SH3GL2, STX1B, CCDC189, KAT8, PRSS36, VAMP4, and ZSWIM7. CONCLUSIONS: We report the first MR study of PD by using dopaminergic neuron-specific eQTL and nominate novel risk genes for PD. Further functional characterization of the nominated risk genes will provide mechanistic insights into PD pathogenesis and potential therapeutic targets. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Sitios de Carácter Cuantitativo/genética , Análisis de la Aleatorización Mendeliana , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple
8.
Transl Psychiatry ; 12(1): 361, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056013

RESUMEN

The missense variant rs13107325 (C/T, p.Ala391Thr) in SLC39A8 consistently showed robust association with schizophrenia in recent genome-wide association studies (GWASs), suggesting the potential pathogenicity of this non-synonymous risk variant. Nevertheless, how this missense variant confers schizophrenia risk remains unknown. Here we constructed a knock-in mouse model (by introducing a threonine at the 393th amino acid of mouse SLC39A8 (SLC39A8-p.393T), which corresponds to rs13107325 (p.Ala391Thr) of human SLC39A8) to explore the potential roles and biological effects of this missense variant in schizophrenia pathogenesis. We assessed multiple phenotypes and traits (associated with rs13107325) of the knock-in mice, including body and brain weight, concentrations of metal ions (including cadmium, zinc, manganese, and iron) transported by SLC39A8, blood lipids, proliferation and migration of neural stem cells (NSCs), cortical development, behaviors and cognition, transcriptome, dendritic spine density, and synaptic transmission. Many of the tested phenotypes did not show differences in SLC39A8-p.393T knock-in and wild-type mice. However, we found that zinc concentration in brain and blood of SLC39A8-p.393T knock-in mice was dysregulated compared with wild-types, validating the functionality of rs13107325. Further analysis indicated that cortical dendritic spine density of the SLC39A8-p.393T knock-in mice was significantly decreased compared with wild-types, indicating the important role of SLC39A8-p.393T in dendritic spine morphogenesis. These results indicated that SLC39A8-p.393T knock-in resulted in decreased dendritic spine density, thus mimicking the dendritic spine pathology observed in schizophrenia. Our study indicates that rs13107325 might confer schizophrenia risk by regulating zinc concentration and dendritic spine density, a featured characteristic that was frequently reported to be decreased in schizophrenia.


Asunto(s)
Proteínas de Transporte de Catión , Esquizofrenia , Animales , Proteínas de Transporte de Catión/genética , Espinas Dendríticas/patología , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Mutación Missense , Esquizofrenia/genética , Esquizofrenia/patología , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...