Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664737

RESUMEN

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Asunto(s)
Bacterias , Metagenómica , Nutrientes , Peptidoglicano , Fitoplancton , Polisacáridos , Agua de Mar , Polisacáridos/metabolismo , Agua de Mar/microbiología , Fitoplancton/metabolismo , Fitoplancton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota
2.
Environ Int ; 182: 108325, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995388

RESUMEN

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Asunto(s)
Alginatos , Microbiota , Alginatos/metabolismo , Bacterias/genética , Agua de Mar/microbiología
3.
Mar Genomics ; 67: 101007, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682850

RESUMEN

Marinimicrobium sp. C6131, which had the ability to degrade chitin, was isolated from deep-sea sediment of the southwest Indian Ocean. Here, the genome of strain C6131 was sequenced and the chitin metabolic pathways were constructed. The genome contained a circular chromosome of 4,207,651 bp with a G + C content of 58.50%. A total of 3471 protein-coding sequences were predicted. Gene annotation and metabolic pathway reconstruction showed that strain C6131 possessed genes and two metabolic pathways involved in chitin catabolism: the hydrolytic chitin utilization pathway initiated by chitinases and the oxidative chitin utilization pathway initiated by lytic polysaccharide monooxygenases. Chitin is the most abundant polysaccharide in the ocean. Degradation and recycling of chitin driven by marine bacteria are crucial for biogeochemical cycles of carbon and nitrogen in the ocean. The genomic information of strain C6131 revealed its genetic potential involved in chitin metabolism. The strain C6131 could grow with colloidal chitin as the sole carbon source, indicating that these genes would have functions in chitin degradation and utilization. The genomic sequence of Marinimicrobium sp. C6131 could provide fundamental information for future studies on chitin degradation, and help to improve our understanding of the chitin degradation process in deep-sea environments.


Asunto(s)
Gammaproteobacteria , Genoma Bacteriano , Genómica , Quitina/metabolismo , Carbono
4.
Mar Genomics ; 62: 100935, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35246307

RESUMEN

The Mariana Trench is the deepest site on earth with diverse extreme conditions such as high hydrostatic pressure, low temperature and lack of light. Organisms surviving in this extreme environment and their life strategies have been largely uninvestigated. Here, we report the complete genome of Marinomonas profundi M1K-6T, isolated from the Mariana Trench deep seawater. The assembled genome comprised 3,648,059 bp without any plasmid. Gene annotation showed that strain M1K-6T possesses a series of genes encoding cold-shock proteins, DEAD box RNA helicase and enzymes for biosynthesis of unsaturated fatty acids, implying its high cold tolerance. Abundant genes responsible for transports of ion, branched-chain amino acids and organic compatible solutes were detected, which could maintain cellular osmotic balance disturbed by high hydrostatic pressure. In addition, detected genes (related to storage carbon, transport systems and two-component regulatory systems) could help strain M1K-6T to improve its ecological fitness in the deep-sea microaerobic and nutrient-limiting environments. Genomic information on M. profundi M1K-6T, provides insights into the adaptation strategies of Marinomonas spp. in the extreme deep-sea environment of the Mariana Trench.


Asunto(s)
Marinomonas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Genómica , Marinomonas/genética , Océano Pacífico , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar
5.
Mar Drugs ; 20(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35323464

RESUMEN

Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N'-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45-50 °C and pH optima of 7.0-7.5. They are all stable at 40 °C and in the pH range of 5.0-11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.


Asunto(s)
Proteínas Bacterianas/química , Quitina/química , Quitinasas/química , Disacáridos/química , Pseudoalteromonas/enzimología , Proteínas Bacterianas/aislamiento & purificación , Quitinasas/aislamiento & purificación , Genoma Bacteriano , Pseudoalteromonas/genética , Cloruro de Sodio/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-35156916

RESUMEN

A Gram-negative, aerobic, non-flagellated and rod-shaped bacterium, strain ASW11-22T, was isolated from an intertidal sediment collected from a coastal area of Qingdao, PR China. The strain grew at 15-40 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0) and with 0.5-10 % (w/v) NaCl (optimum, 1.0 %). It hydrolysed gelatin and aesculin but did not reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ASW11-22T belonged to the genus Celeribacter, showing the highest sequence similarity to the type strains of Celeribacter halophilus MCCC 1A06432T (98.20 %) and Celeribacter ethanolicus NH195T (97.84 %). The genomic DNA G+C content was 59.1 mol%. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and its main polar lipids were phosphatidylglycerol and one unidentified aminolipid. The sole respiratory quinone of strain ASW11-22T was ubiquinone-10. On the basis of the polyphasic evidence presented in this paper, strain ASW11-22T represents a novel Celeribacter species, for which the name Celeribacter litoreus sp. nov. is proposed. The type strain is ASW11-22T (=KCTC 82495T=MCCC 1K05584T).


Asunto(s)
Alphaproteobacteria/clasificación , Sedimentos Geológicos , Filogenia , Agua de Mar , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
7.
Mar Genomics ; 59: 100874, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34493388

RESUMEN

Pelagovum pacificum SM1903T, belonging to a novel genus of the family Rhodobacteraceae, was isolated from the surface seawater of the Mariana Trench. Here, we report the first complete genome sequence of the novel genus Pelagovum. The genome of strain SM1903T consists of a circular chromosome of 4,040,866 bp and two plasmids of 41,363 bp and 9705 bp, respectively. Gene annotation and metabolic pathway analyses showed that strain SM1903T possesses a series of genes related to adaptation to marine oligotrophic environments, which are involved in utilization of aromatic compounds, allantoin, and alkylphosphonate, and second messenger signaling in response to the oligotrophic stress. This strain also contains a variety of genes involved in coping with other stresses including osmotic stress, oxidative stress, cold shock, and heat shock. These features would assist this strain to survive under the natural nutrient limitation and other stresses from the environment. The genome of strain SM1903T of the novel genus Pelagovum would deepen our knowledge on marine bacterioplankton and their adaption strategies to marine oligotrophic environments.


Asunto(s)
Genoma Bacteriano , Rhodobacteraceae , Composición de Base , Filogenia , Rhodobacteraceae/genética , Agua de Mar
8.
Antonie Van Leeuwenhoek ; 114(7): 947-955, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33864544

RESUMEN

A novel Gram-negative, rod-shaped, aerobic, oxidase-positive and catalase-negative bacterium, designated strain SM1970T, was isolated from a seawater sample collected from the Mariana Trench. Strain SM1970T grew at 15-37 oC and with 1-5% (w/v) NaCl. It hydrolyzed colloidal chitin, agar and casein but did not reduce nitrate to nitrite. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1970T formed a distinct lineage close to the genus Catenovulum within the family Alteromonadaceae, sharing the highest sequence similarity (93.6%) with type strain of Catenovulum maritimum but < 93.0% sequence similarity with those of other known species in the class Gammaproteobacteria. The major fatty acids of strain SM1970T were summed feature 3 (C16: 1 ω7c and/or C16: 1 ω6c), C16: 0 and summed feature 8 (C18: 1 ω7c and/or C18: 1 ω6c). The major polar lipids of the strain included phosphatidylethanolamine and phosphatidylglycerol and its main respiratory quinone was ubiquinone 8. The draft genome of strain SM1970T consisted of 77 scaffolds and was 4,172,146 bp in length, containing a complete set of genes for chitin degradation. The average amino acid identity (AAI) values between SM1970T and type strains of known Catenovulum species were 56.6-57.1% while the percentage of conserved proteins (POCP) values between them were 28.5-31.5%. The genomic DNA G + C content of strain SM1970T was 40.1 mol%. On the basis of the polyphasic analysis, strain SM1970T is considered to represent a novel species in a novel genus of the family Alteromonadaceae, for which the name Marinifaba aquimaris is proposed with the type strain being SM1970T (= MCCC 1K04323T = KCTC 72844T).


Asunto(s)
Alteromonadaceae , Quitina , Alteromonadaceae/genética , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar , Análisis de Secuencia de ADN
9.
Environ Microbiol ; 23(2): 1162-1173, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33185972

RESUMEN

Most marine copiotrophic bacteria can produce extracellular enzymes to degrade biopolymers into bio-available smaller solutes, while oligotrophic bacteria usually cannot. Bacterial extracellular enzymes and enzymatic products can be a common resource that could be utilized by both copiotrophs and oligotrophs; when present, oligotrophs may outcompete the enzyme-producing copiotrophs. However, copiotrophs and oligotrophs consistently coexist in the ocean. How they maintain coexistence has still not been experimentally studied. In this study, the interaction and coexistence of a copiotroph and an oligotroph, isolated from the same surface seawater sample and utilizing the same proteinaceous substrate, were experimentally investigated. The copiotroph could secrete extracellular proteases to degrade and then utilize the proteinaceous substrate. The oligotroph was unable to utilize the proteinaceous substrate by itself, but could grow by using the hydrolysate amino acids. The copiotroph outcompeted the oligotroph by adsorbing the amino acids quickly and having a higher growth rate in the rich medium. The oligotroph survived by adapting to low concentration of nutrients. The copiotroph and oligotroph were able to maintain long-term (up to 142 days) coexistence in the laboratory. This study indicates that differences in the utilization of different concentrations of nutrients can drive the coexistence of marine copiotrophs and oligotrophs.


Asunto(s)
Bacterias/crecimiento & desarrollo , Interacciones Microbianas , Agua de Mar/microbiología , Aminoácidos/análisis , Aminoácidos/metabolismo , Bacterias/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Nutrientes/análisis , Nutrientes/metabolismo , Agua de Mar/química
10.
Int J Syst Evol Microbiol ; 70(1): 105-111, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31626585

RESUMEN

A Gram-negative, aerobic, non-flagellated and ovoid- or rod-shaped bacterium, designated strain SM1902T, was isolated from the sediment sampled at the Jia River estuary, Yantai, PR China. The strain grew at 10-37 °C (optimum, 25-30 °C), pH 6.0-10.0 (pH 7.0) and with 0.5-13.0 % (w/v) NaCl (2.5%). It reduced nitrate to nitrite, but did not produce bacteriochlorophyll a. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1902T constituted a separated lineage within the family Rhodobacteraceae and was closely related to Meridianimarinicoccus roseus TG-679T and Phycocomes zhengii LMIT002T with 96.1 and 94.3 % 16S rRNA gene sequence similarities, respectively. The predominant cellular fatty acid was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and an unidentified lipid. The sole respiratory quinone was ubiquinone-10. The in silico DNA-DNA hybridization values between strain SM1902T and Meridianimarinicoccus roseus TG-679T and Phycocomes zhengii LMIT002T were 19.6 and 19.5 %, respectively; and the average nucleotide identity values between them were 76.1 and 74.2 %, respectively. The genomic DNA G+C content of strain SM1902T was 58.2 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained in this study, strain SM1902T is considered to represent a novel species in a new genus within the family Rhodobacteraceae, for which the name Fluviibacterium aquatile gen. nov., sp. nov. is proposed. The type strain is SM1902T (=KCTC 72045T=MCCC 1K03596T=CCTCC AB 2018346T).


Asunto(s)
Estuarios , Sedimentos Geológicos/microbiología , Filogenia , Rhodobacteraceae/clasificación , Técnicas de Tipificación Bacteriana , Bacterioclorofila A , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/aislamiento & purificación , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
11.
Front Microbiol ; 10: 2408, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681251

RESUMEN

Antarctica is covered by multiple larger glaciers with diverse extreme conditions. Microorganisms in Antarctic regions are primarily responsible for diverse biogeochemical processes. The identity and functionality of microorganisms from polar glaciers are defined. However, little is known about microbial communities from the high elevation glaciers. The Union Glacier, located in the inland of West Antarctica at 79°S, is a challenging environment for life to survive due to the high irradiance and low temperatures. Here, soil and rock samples were obtained from three high mountains (Rossman Cove, Charles Peak, and Elephant Head) adjacent to the Union Glacier. Using metagenomic analyses, the functional microbial ecosystem was analyzed through the reconstruction of carbon, nitrogen and sulfur metabolic pathways. A low biomass but diverse microbial community was found. Although archaea were detected, bacteria were dominant. Taxa responsible for carbon fixation were comprised of photoautotrophs (Cyanobacteria) and chemoautotrophs (mainly Alphaproteobacterial clades: Bradyrhizobium, Sphingopyxis, and Nitrobacter). The main nitrogen fixation taxa were Halothece (Cyanobacteria), Methyloversatilis, and Leptothrix (Betaproteobacteria). Diverse sulfide-oxidizing and sulfate-reducing bacteria, fermenters, denitrifying microbes, methanogens, and methane oxidizers were also found. Putative producers provide organic carbon and nitrogen for the growth of other heterotrophic microbes. In the biogeochemical pathways, assimilation and mineralization of organic compounds were the dominant processes. Besides, a range of metabolic pathways and genes related to high irradiance, low temperature and other stress adaptations were detected, which indicate that the microbial communities had adapted to and could survive in this harsh environment. These results provide a detailed perspective of the microbial functional ecology of the Union Glacier area and improve our understanding of linkages between microbial communities and biogeochemical cycling in high Antarctic ecosystems.

12.
Int J Syst Evol Microbiol ; 69(8): 2571-2576, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31225791

RESUMEN

A Gram-stain-negative, aerobic, flagellated, rod-shaped bacterial strain, SM1705T, was isolated from a surface seawater sample collected from the South China Sea. The strain grew at 10-40 °C and with 0.5-13.0 % (w/v) NaCl. It hydrolysed Tweens 20, 40 and 60, but did not hydrolyse starch or Tween 80 nor reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1705T was affiliated with the genus Parvularcula, sharing the highest sequence similarity (96.0 %) with type strain of Parvularcula bermudensis and forming a coherent branch together with the latter within the clade of Parvularcula. The major cellular fatty acids were identified as summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C18 : 0. Polar lipids included three unidentified glycolipids and one unidentified lipid. The major respiratory quinone of strain SM1705T was Q10. The genomic DNA G+C content of strain SM1705T was 59.3 mol%. Based on the polyphasic evidence presented in this paper, strain SM1705T represents a novel Parvularcula species, for which the name Parvularcula marina sp. nov. is proposed. The type strain is SM1705T (=KCTC 62795T=MCCC 1K03505T=CCTCC AB 2018345T).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Agua de Mar/microbiología , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 69(7): 2089-2094, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31091186

RESUMEN

A Gram-stain-negative, aerobic, oxidase- and catalase-positive, non-flagellated, non-gliding, yellow-pigmented, and rod-shaped bacterium with appendages, designated strain SM1704T, was isolated from surface seawater collected from the South China Sea. The strain grew at 15-42 °C and with 1-10 % NaCl. It hydrolysed aesculin, but did not hydrolyse gelatin and Tween 80 nor reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SM1704T was affiliated with the genus Muricauda, sharing 94.1-95.9 % sequence similarities with type strains of recognized Muricauda species. The major fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH and the main polar lipids were phosphatidylethanolamine, three unidentified lipids and three unidentified aminolipids. The major respiratory quinone was menaquinone-6. The genomic DNA G+C content of strain SM1704T was 40.7 mol%. On the basis of results from polyphasic analysis of strain SM1704T, it is considered to represent a novel species within the genus Muricauda, for which the name Muricaudananhaiensis sp. nov. is proposed. The type strain is SM1704T (=KCTC 62797T=MCCC 1K03557T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Stand Genomic Sci ; 13: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505389

RESUMEN

Arcticibacterium luteifluviistationis SM1504T was isolated from Arctic surface seawater and classified as a novel genus of the phylum Bacteroides. To date, no Arcticibacterium genomes have been reported, their genomic compositions and metabolic features are still unknown. Here, we reported the complete genome sequence of A. luteifluviistationis SM1504T, which comprises 5,379,839 bp with an average GC content of 37.20%. Genes related to various stress (such as radiation, osmosis and antibiotics) resistance and gene clusters coding for carotenoid and flexirubin biosynthesis were detected in the genome. Moreover, the genome contained a 245-kb genomic island and a 15-kb incomplete prophage region. A great percentage of proteins belonging to carbohydrate metabolism especially in regard to polysaccharides utilization were found. These related genes and metabolic characteristics revealed genetic basis for adapting to the diverse extreme Arctic environments. The genome sequence of A. luteifluviistationis SM1504T also implied that the genus Arcticibacterium may act as a vital organic carbon matter decomposer in the Arctic seawater ecosystem.

15.
Genome Announc ; 6(22)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29853496

RESUMEN

The complete genome of Pseudoalteromonas sp. strain SAO4-4, a protease-producing bacterium from seawater, is composed of two circular chromosomes and one plasmid. This genome sequence will provide a better understanding of the ecological roles of protease-producing bacteria in the degradation of organic matter in marine aquatic environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...