Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 348: 123853, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552772

RESUMEN

Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.


Asunto(s)
Insecticidas , Perciformes , Contaminantes Químicos del Agua , Animales , Tiametoxam/metabolismo , Pez Cebra/metabolismo , Insecticidas/metabolismo , Microplásticos/toxicidad , Plásticos/metabolismo , Larva , Poliestirenos/metabolismo , Organismos Acuáticos , Contaminantes Químicos del Agua/metabolismo
2.
Front Med (Lausanne) ; 11: 1327505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500952

RESUMEN

A patient presenting with several basal cell carcinomas, pigmented nevi, and developmental defects was diagnosed with nevoid basal cell carcinoma syndrome. Gene panel sequencing and Sanger sequencing were used to identify a novel heterozygous frameshift mutation, c.1312dupA:p.Ser438Lysfs, in exon 9 of PTCH1. I-Tasser and PyMol analyses indicated that the mutated protein patched homolog 1 (PTCH1) lacked 12 transmembrane domains and the intracellular and extracellular rings of ECD2 compared with the wild-type protein, resulting in a remarkably different structure from that of the wild-type protein. This case extends our knowledge of the mutation spectrum of NBCCS.

3.
Environ Res ; 250: 118524, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401682

RESUMEN

Microplastics (MPs) are emerging pollutants widely distributed in the environment, inducing toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of simulated sunlight-aged MPs have rarely been investigated. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0, 0.1, 1, 10, and 100 µg/L) of virgin polystyrene (V-PS) and aged polystyrene (A-PS) for 120 hpf to evaluate the neurotoxicity. The results demonstrated that simulated sunlight irradiation altered the physicochemical properties (morphology, functional groups, and chemical composition) of V-PS. Exposure to A-PS causes greater toxicity on locomotor ability in larval zebrafish than V-PS. Motor neuron development was disrupted by transgenic (hb9-GFP) zebrafish larvae exposed to A-PS, with significant alterations in neurotransmitter levels (ACh, DA, 5-HT, and GABA) and enzyme activity (AChE, ChAT, and ChE). Further investigation found that exposure to A-PS had a significantly impact on the expression of neurotransmission and neurodevelopment-related genes in zebrafish. These findings suggest that A-PS induces neurotoxicity by its effects on neurotransmission and neurodevelopment. This study highlights the neurotoxic effects and mechanisms of simulated sunlight irradiation of MPs, providing new insights for assessing the ecological risks of photoaged MPs in the environment.


Asunto(s)
Larva , Microplásticos , Poliestirenos , Transmisión Sináptica , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/crecimiento & desarrollo , Poliestirenos/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Transmisión Sináptica/efectos de los fármacos
4.
Environ Pollut ; 345: 123460, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290655

RESUMEN

Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-ß-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.


Asunto(s)
Retardadores de Llama , Pez Cebra , Animales , Pez Cebra/metabolismo , Bioacumulación , Estereoisomerismo , Biotransformación , Ciclohexanos/metabolismo , Retardadores de Llama/análisis
5.
J Hazard Mater ; 465: 133228, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141303

RESUMEN

The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 µg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.


Asunto(s)
Retardadores de Llama , Pez Cebra , Animales , Larva , Vitamina A , Transcriptoma , Bromobencenos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Retardadores de Llama/toxicidad , Adenosina Trifosfatasas
6.
Environ Pollut ; 337: 122605, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742863

RESUMEN

Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hepatopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings provide insight into the toxicity of herbicides on non-target organisms.


Asunto(s)
Herbicidas , Animales , Herbicidas/toxicidad , Herbicidas/metabolismo , Astacoidea/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo
7.
Sci Total Environ ; 900: 165874, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37517734

RESUMEN

Microplastics (MPs) are ubiquitous environmental contaminants that cause neurotoxicity in various organisms. MPs are typically affected by light irradiation and undergo photoaging. However, the neurotoxic effects of photoaged polystyrene (P-PS) and its underlying mechanisms remain unclear. In this study, locomotion behaviors, neuronal development, neurotransmitter levels, and the expression of neurotransmission-related genes were investigated in Caenorhabditis elegans exposed to P-PS at environment-relevant concentrations (0.1-100 µg/L). The characterization results showed that photoaging accelerated the aging process and changed the physicochemical properties of the MPs. The toxicity results suggested that exposure to 1-100 µg/L P-PS caused more severe neurotoxicity than virgin polystyrene (V-PS) with endpoints of head thrashes, body bends, wavelength, and mean amplitude. Exposure to P-PS also altered the fluorescence intensity and neurodegeneration percentage of serotonergic, glutamatergic, dopaminergic, and aminobutyric acid (GABA) in transgenic nematodes. Similarly, significant reductions in the levels of these neurotransmitters were also observed. Based on Pearson's correlation, locomotion behaviors were negatively correlated with the neurotransmission of serotonin, glutamate, dopamine, and GABA. Further investigation suggested that the expression of neurotransmitter-related genes (e.g., tph-1, eat-4, and unc-46) was significantly altered in the nematodes. Collectively, the neurotoxic effects of P-PS were attributed to abnormal neurotransmission. This study highlights the potential toxicity of MPs photoaged under environmentally relevant conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Microplásticos/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Dopamina , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología , Proteínas de Caenorhabditis elegans/metabolismo
8.
Front Med (Lausanne) ; 10: 1217545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457588

RESUMEN

An acute diffuse pustular eruption occurred in a patient after secukinumab injection and then the clinical presentation has been related to streptococcus infection after it has been isolated from throat swabs. Pustulosisacuta generalisata was definitively diagnosed. Antibiotic treatment had a poor effect, but the response to glucocorticoids was better.

9.
Sci Total Environ ; 894: 164838, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353013

RESUMEN

Maternal exposure to environment toxicants is an important risk factor for neurobehavioral health in their offspring. In our study, we investigated the impact of maternal exposure to chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs, commercial name: F-53B) on behavioral changes and the potential mechanism in the offspring larvae of zebrafish. Adult zebrafish exposed to Cl-PFESAs (0, 0.2, 2, 20 and 200 µg/L) for 21 days were subsequently mated their embryos were cultured for 5 days. Higher concentrations of Cl-PFESAs in zebrafish embryos were observed, along with, reduced swimming speed and distance travelled in the offspring larvae. Molecular docking analysis revealed that Cl-PFESAs can form hydrogen bonds with brain-derived neurotropic factor (BDNF), protein kinase C, alpha, (PKCα), Ca2+-ATPase and Na, K - ATPase. Molecular and biochemical studies evidenced Cl-PFESAs induce dopaminergic dysfunction, eye developmental defects and disrupted Ca2+ homeostasis. Together, our results showed that maternal exposure to Cl-PFESAs lead to behavioral alteration in offspring mediated by disruption in Ca2+ homeostasis, dopaminergic dysfunction and eye developmental defects.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Femenino , Pez Cebra/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Calcio/metabolismo , Larva , Simulación del Acoplamiento Molecular , Fluorocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adenosina Trifosfatasas/metabolismo
10.
Ecotoxicol Environ Saf ; 258: 114969, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37167736

RESUMEN

2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Bioacumulación , Contaminantes del Suelo/análisis , Materia Orgánica Disuelta , Adsorción , Carbono
11.
Aquat Toxicol ; 260: 106585, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37247575

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is ubiquitous in aquatic environment, but its effect on intestinal health of fish has yet not been investigated. In the present study, the AB strain zebrafish embryos were exposed to environmentally realistic concentrations (0, 30, 300, and 3000 ng·L-1) of TDCIPP for 90 days, after which the fish growth and physiological activities were evaluated, and the intestinal microbes were analyzed by 16S rRNA gene high-throughput sequencing. Our results manifested that the body length and body weight were significantly reduced in the female zebrafish but not in males. Further analyses revealed that TDCIPP resulted in notable histological injury of intestine, which was accompanied by impairment of epithelial barrier integrity (decreased tight junction protein 2), inflammation responses (increased interleukin 1ß), and disruption of neurotransmission (increased serotonin) in female intestine. Male intestines maintained intact intestinal structure, and the remarkably increased activity of glutathione peroxidase (GPx) might protect the male zebrafish from inflammation and intestinal damage. Furthermore, 16S rRNA sequencing analysis showed that TDCIPP significantly altered the microbial communities in the intestine in a gender-specific manner, with a remarkable increase in alpha diversity of the gut microbiome in male zebrafish, which might be another mechanism for male fish to protect their intestines from damage by TDCIPP. Correlation analysis revealed that abnormal abundances of pathogenic bacteria (Chryseobacterium, Enterococcus, and Legionella) might be partially responsible for the impaired epithelial barrier integrity and inhibition in female zebrafish growth. Taken together, our study for the first time demonstrates the high susceptibility of intestinal health and gut microbiota of zebrafish to TDCIPP, especially for female zebrafish, which could be partially responsible for the female-biased growth inhibition.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Fosfatos/metabolismo , Pez Cebra/metabolismo , Compuestos Organofosforados/metabolismo , Disbiosis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Contaminantes Químicos del Agua/toxicidad , Inflamación
12.
Environ Pollut ; 322: 121143, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731738

RESUMEN

Tetrabromobisphenol A (TBBPA) is an industrial chemical and the most widely used brominated flame retardant, and has raised environmental health concerns. However, the maternal transfer toxicity of TBBPA is less studied in fish despite its frequency in the water environment, and limited evidence exists to confirm the major contributing factors. In this study, we performed a 28-d experiment on female and male zebrafish exposed to TBBPA (0, 5, 50, and 500 µg/L), and shortened body length of offspring larvae was observed at the maximum exposure concentration. By cross-mating control and exposed zebrafish (male or female), our results showed that the observed growth inhibition in the progeny was attributed to the maternal transfer effect. Although 28-d exposure resulted in the existence of TBBPA in ovaries and ova, the maternal transfer of TBBPA was not responsible for the shortened body length of offspring larvae, as evidenced through TBBPA embryo microinjection. Moreover, proteomic analyses in ova indicated that the abundance of apolipoproteins (apoa1, apoa1b, apoa2, apoa4b, and apoc1) was significantly downregulated in the ova, which may be partially responsible for the shortened body length of offspring larvae. Interestingly, these proteins did not differentially express in the ovaries. Therefore, our results demonstrate that TBBPA exposure disturbed maternal protein transfer from the ovaries to the ova, providing novel insights into the underlying maternal transfer effects.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Animales , Masculino , Femenino , Pez Cebra/metabolismo , Larva , Proteómica , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo
13.
Chemosphere ; 324: 138252, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36849020

RESUMEN

Microplastics (MPs) are nearly ubiquitous in aquatic ecosystems and may affect aquatic organisms. In this study, virgin and aged polystyrene MPs (PS-MPs) of size 1 µm were selected to analyze their adverse effects on larvae zebrafish. Exposure to PS-MPs significantly reduced the average swimming speed of zebrafish, and the behavioral effects caused by aged PS-MPs on zebrafish were more pronounced. Fluorescence microscopy revealed that 10-100 µg/L of PS-MPs accumulated in tissues of zebrafish. As an endpoint of neurotransmitter concentration, exposure to aged PS-MPs at doses ranging from 0.1 to 100 µg/L significantly increased the dopamine (DA), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), and acetylcholine (ACh) levels in zebrafish. Similarly, exposure to aged PS-MPs significantly altered the expression of genes related to these neurotransmitters (e.g., dat, 5ht1aa, and gabral genes). According to Pearson correlation analyses, neurotransmissions was significantly correlated with neurotoxic effects of aged PS-MPs. Thus, aged PS-MPs cause neurotoxicity in zebrafish through their effects on DA, 5-HT, GABA, and ACh neurotransmissions. The results highlight the importance of the neurotoxicity of aged PS-MPs in zebrafish, which has important implications for the risk assessment of aged MPs and the conservation of aquatic ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/toxicidad , Pez Cebra/metabolismo , Larva , Ecosistema , Serotonina/metabolismo , Estrés Oxidativo , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/metabolismo
14.
J Hazard Mater ; 443(Pt B): 130209, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36327836

RESUMEN

Petroleum leakages can seriously damage the soil environment and cause a persistent harm to human health, due to the release of heavy oil pollutants with a high viscosity and high molecular weight. In this paper, biochar aerogel materials were successfully prepared under 600, 700 and 800 â„ƒ (accordingly labeled as 600-aerogel, 700-aerogel and 800-aerogel) with green, sustainable and abundant sisal leaves as raw materials for the remediation of heavy oil-contaminated soil. The remediation performances of biochar aerogel supplement for heavy oil-contaminated soil were investigated, while microbial abundance and community structure were characterized. The degradation efficiency of 600-aerogel, 700-aerogel and 800-aerogel treatments was accordingly 80.69%, 86.04% and 86.62% after 60 days. Apart from adsorption behavior, biostimulation strengthened the degradation efficiency, according to findings from first-order degradation kinetics. Biochar aerogel supplement basically increased genera microbial abundance for Sinomonas, Streptomyces, Sphingomonas and Massilia with petroleum degradation abilities through microorganisms' biostimulation. Sinomonas as the dominant genus with the highest abundance probably contributed much higher capacities to heavy oil degradation. This study can provide an inspiring reference for the development of green carbon-based materials to be applied in heavy oil-contaminated soils through biostimulation mechanisms.


Asunto(s)
Petróleo , Contaminantes del Suelo , Humanos , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Microbiología del Suelo , Carbón Orgánico/química , Petróleo/metabolismo , Suelo/química
15.
J Hazard Mater ; 445: 130543, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493651

RESUMEN

Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 µg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 µg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10-100 µg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 µg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.


Asunto(s)
Caenorhabditis elegans , Síndromes de Neurotoxicidad , Animales , Caenorhabditis elegans/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Plásticos/metabolismo , Ácido Glutámico , Serotonina/metabolismo , Dopamina , Neurotransmisores/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
16.
Ecotoxicol Environ Saf ; 249: 114469, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321685

RESUMEN

The tissue-specific bioaccumulation of Dechlorane Plus (DP) isomers was investigated in two predator fish species (redtail catfish, RF; and oscar fish, OF) that were feeding on tiger barb (TB), which was exposed to syn-DP and anti-DP isomers. The biotransformation potential of DP isomers was examined by in vitro metabolism using fish liver microsomes. No difference in accumulation behaviors of DP isomers was observed between RF and OF, and the accumulation of both syn- and anti-DP isomers exhibiting a linear increase trend with the exposure time in all fish tissues. The assimilation efficiencies and depuration rates for syn-DP and anti-DP were determined to be the highest in the liver. Biomagnification factors (BMFs) for both syn-DP and anti-DP were higher than one in the serum and gastrointestinal tract of fish, whereas were less than one in the other tissues. The wet-weight concentrations of DP isomers in tissues were significantly correlated with the lipid contents in both fish species, indicating that the tissue distribution of DP isomers occurred through passive diffusion to the lipid compartments in vivo. Tissue-specific compositions of DP isomers were observed, with anti-DP selectively accumulating in the liver, gonad, serum, and gills, whilst syn-DP in the carcass and GI tract. However, after being normalized of all tissues, the fish showed no selective accumulation of DP isomers during the exposure period, and selective accumulation of syn-DP was observed during the depuration period. No potential DP metabolites were detected in the fish tissues and in vitro metabolism systems. The main cause of this stereoselective DP isomer accumulation could have been the selective excretion of anti-DP isomer through the fish feces.


Asunto(s)
Bagres , Retardadores de Llama , Hidrocarburos Clorados , Compuestos Policíclicos , Animales , Retardadores de Llama/análisis , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Compuestos Policíclicos/análisis , Bagres/metabolismo , Lípidos
17.
Aquat Toxicol ; 252: 106313, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182864

RESUMEN

Microcystin-LR (MC-LR) is a kind of natural toxin which exists widely in aquatic environments and has been reported to be hepatotoxic and carcinogenic. At present, the promoting mechanism of MC-LR on hepatocellular carcinoma (HCC) remains largely unexplored. In this study, the hepatocellular promoting effect of MC-LR was described in KrasV12 transgenic zebrafish, a doxycycline (DOX) inducible HCC model. Our results showed that MC-LR could aggravate the progression of HCC at an environmentally relevant concentration (3 µg/L), which was accompanied by the decreased activity and down-regulated transcription level of serine/threonine phosphatase 2A (PP2A). Using TMT labeling quantitative phosphoproteomics, we found that the 1049 phosphopeptides were significantly changed (508 up-regulated and 541 down-regulated) in liver from combined exposure to DOX and 3 µg/L MC-LR group compared to the DOX group. Enriched pathways by KEGG analysis suggested that differentially phosphorylated proteins were mainly related to Wnt signaling pathway. Furthermore, the mRNA expression and protein abundance of ß-Catenin in Wnt signaling pathway were significantly up-regulated following exposure to MC-LR. In short, our results suggested that MC-LR significantly inhibited the activity of PP2A, which in turn activated Wnt signaling, eventually resulting in progression of liver tumor in transgenic zebrafish.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Contaminantes Químicos del Agua , Animales , Femenino , Pez Cebra/genética , Pez Cebra/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Doxiciclina , Fosfopéptidos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Animales Modificados Genéticamente , Serina , ARN Mensajero
18.
Chemosphere ; 308(Pt 1): 136130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36049635

RESUMEN

The perfluorooctane sulfonate alternative, F-53B, induces multiple physiological defects but whether it can disrupt eye development is unknown. We exposed zebrafish to F-53B at four different concentrations (0, 0.15, 1.5, and 15 µg/L) for 120 h post-fertilization (hpf). Locomotor behavior, neurotransmitters content, histopathological alterations, morphological changes, cell apoptosis, and retinoic acid signaling were studied. Histology and morphological analyses showed that F-53B induced pathological changes in lens and retina of larvae and eye size were significantly reduced as compared to control. Acridine orange (AO) staining revealed a dose-dependent increase in early apoptosis, accompanied by upregulation of p53, casp-9 and casp-3 genes. Genes related to retinoic acid signaling (aldh1a2), lens developmental (cryaa, crybb, crygn, and mipa) and retinal development (pax6, rx1, gant1, rho, opn1sw and opn1lw) were significantly downregulated. In addition, behavioral responses (swimming speed) were significantly increased, while no significant changes in the neurotransmitters (dopamine and acetylcholine) level were observed. Therefore, in this study we observed that exposure to F-53B inflicted histological and morphological changes in zebrafish larvae eye, induced visual motor dysfunctions, perturbed retinoid signaling and retinal development and ultimately triggering apoptosis.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Acetilcolina , Naranja de Acridina/análisis , Alcanosulfonatos/análisis , Animales , Dopamina , Larva , Retinoides , Tretinoina , Proteína p53 Supresora de Tumor , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Environ Pollut ; 305: 119216, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395351

RESUMEN

High-density culturing with excessive feeding of commercial feed has caused heavy metals pollution to agricultural production system. In this study, the dynamic changes and transfer of heavy metals in rice-crayfish coculture system (RCCS) and crayfish intensive culture system (CICS) within a completed culture cycle were systematically quantified. Our results showed that Cd in feed represented more than 50% of the total Cd input, and the inputs of As and Cr were mainly from irrigation. The residues of As and Pb in RCCS were slightly higher than those in CICS, while the residues of Cd and Cr in RCCS were far fewer than those in CICS. Moreover, the metal pollution index in CICS was 0.781, while it was 0.543 in the RCCS. Furthermore, a large proportion of the Cd and Pb in CICS was released into the external environment through drainage. Notably, the absorption and solidification of heavy metals by straw did not increase the residues of As and Pb in the major components of RCCS in the second year. Compared to CICS, RCCS did not produce many heavy metal residues or cause heavy metal discharge pressure on the external environment, and its food product had a low risk of heavy metal contamination.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Animales , Astacoidea , Cadmio , China , Técnicas de Cocultivo , Monitoreo del Ambiente , Plomo , Metales Pesados/análisis , Oryza/química , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis
20.
Chemosphere ; 300: 134588, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35427672

RESUMEN

Tetrachlorobisphenol A (TCBPA), an alternative to tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and could potentially impact the reproductive system of organisms. However, the mechanisms underlying TCBPA-mediated reproductive effects remain unclear. Herein, we exposed Caenorhabditis elegans (C. elegans, L4 larvae) to TCBPA at environmentally relevant doses (0-100 µg/L) for 24 h. Exposure to TCBPA at concentrations of 1-100 µg/L impaired fertility of C. elegans, as indicated by brood size. After staining, the number of germline cells decreased in a dose-dependent manner, whereas germline cell corpses increased in exposed nematodes (10-100 µg/L TCBPA). Moreover, the expression of genes related to the germline apoptosis pathway was regulated following exposure to 100 µg/L TCBPA, indicating the potential role of DNA damage in TCBPA-induced apoptosis. Apoptosis was nearly abolished in ced-4 and ced-3 mutants and blocked in hus-1, egl-1, cep-1, and ced-9 mutants. Numerous foci were detected in TCBPA (100 µg/L)-exposed hus-1::GFP strains. These results indicate that TCBPA induces hus-1-mediated DNA damage and further causes apoptosis via a cep-1-dependent pathway. Our data provide evidence that TCBPA causes reproductive toxicity via DNA damage-induced apoptosis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Clorofenoles , Animales , Apoptosis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clorofenoles/farmacología , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...