Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(9): 3719-3728, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37403831

RESUMEN

Currently, for most three-terminal neuromorphic devices, only the gate terminal is active. The inadequate modes and freedom of modulation in such devices greatly hinder the implementation of complex neural behaviors and brain-like thinking strategies in hardware systems. Taking advantage of the unique feature of co-existing in-plane (IP) and out-of-plane (OOP) ferroelectricity in two-dimensional (2D) ferroelectric α-In2Se3, we construct a three-active-terminal neuromorphic device where any terminal can modulate the conductance state. Based on the co-operation mode, controlling food intake as a complex nervous system-level behavior is achieved to carry out positive and negative feedback. Specifically, reinforcement learning as a brain-like thinking strategy is implemented due to the coupling between polarizations in different directions. Compared to the single modulation mode, the chance of the agent successfully obtaining the reward in the Markov decision process is increased from 68% to 82% under the co-operation mode through the coupling effect between IP and OOP ferroelectricity in 2D α-In2Se3 layers. Our work demonstrates the practicability of three-active-terminal neuromorphic devices in handling complex tasks and advances a significant step towards implementing brain-like learning strategies based on neuromorphic devices for dealing with real-world challenges.

2.
Nano Lett ; 23(14): 6752-6759, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37283505

RESUMEN

The neuromorphic system is an attractive platform for next-generation computing with low power and fast speed to emulate knowledge-based learning. Here, we design ferroelectric-tuned synaptic transistors by integrating 2D black phosphorus (BP) with a flexible ferroelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Through nonvolatile ferroelectric polarization, the P(VDF-TrFE)/BP synaptic transistors show a high mobility value of 900 cm2 V-1 s-1 with a 103 on/off current ratio and can operate with low energy consumption down to the femtojoule level (∼40 fJ). Reliable and programmable synaptic behaviors have been demonstrated, including paired-pulse facilitation, long-term depression, and potentiation. The biological memory consolidation process is emulated through ferroelectric gate-sensitive neuromorphic behaviors. Inspiringly, the artificial neural network is simulated for handwritten digit recognition, achieving a high recognition accuracy of 93.6%. These findings highlight the prospects of 2D ferroelectric field-effect transistors as ideal building blocks for high-performance neuromorphic networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...