Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1352, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906645

RESUMEN

Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine.


Asunto(s)
Fiebre de Lassa , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Masculino , Animales , Macaca fascicularis , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Nucleoproteínas/inmunología , Inmunidad Humoral , Replicación Viral , Linfocitos T/inmunología , Células Asesinas Naturales/inmunología , Transcriptoma
2.
Nat Microbiol ; 8(1): 64-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604507

RESUMEN

Pathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs. Cynomolgus monkeys immunized with MOPEVACMAC, targeting Machupo virus, prevented the lethality of this virus and induced partially NWA cross-reactive neutralizing Abs. We then developed the pentavalent MOPEVACNEW vaccine, expressing glycoproteins from all pathogenic South American NWAs. Immunization of cynomolgus monkeys with MOPEVACNEW induced neutralizing Abs against five NWAs, strong innate followed by adaptive immune responses as detected by transcriptomics and provided sterile protection against Machupo virus and the genetically distant Guanarito virus. MOPEVACNEW may thus be efficient to protect against existing and potentially emerging NWAs.


Asunto(s)
Arenavirus del Nuevo Mundo , Animales , Arenavirus del Nuevo Mundo/metabolismo , Vacunas Combinadas , Macaca fascicularis/metabolismo , Anticuerpos Neutralizantes , Glicoproteínas
3.
Vaccine ; 41(3): 855-861, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36564275

RESUMEN

NGS sequencing was evaluated to understand its added value for animal health vaccine candidates. We have previously established the proof of concept for its application in purity testing on several Master Seeds. Here we evaluate the NGS method after enrichment to detect pestiviruses. To achieve this, we conducted a spiking study using 6 viruses, consisting of 3 pestiviruses and 3 other RNA-viruses at different concentrations into cell suspension. A deep Illumina random sequencing of all nucleic acids (DNA and RNA) was performed. The bioinformatics analysis including both assembly into contigs and annotation were processed using viral public databases for the spiked viruses' identification. Here we present the results of spiking experiments for the simultaneous spike of 6 viruses at 100-10 and 1 TCID50/ml. Using Illumina sequencing, the 3 pestiviruses were all detected at the highest concentration, and even at the lowest one such as 1 TCID50/ml for CSFV. Regarding the other viruses, they were not detected at all. Overall, the study showed consistent results for specific detection of pestiviruses with an increase of sensitivity after enrichment. The sensitivity of NGS evaluated by virus spiking experiments of cells demonstrated that NGS method is a valuable and sensitive tool for specific agent detection required in purity testing during vaccine development. This NGS method should be considered as an alternative tool of current purity testing for the prospective testing of biological products.


Asunto(s)
Productos Biológicos , Pestivirus , Virus , Animales , Pestivirus/genética , Estudios Prospectivos , Virus/genética , ARN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Virulence ; 13(1): 654-669, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35437094

RESUMEN

The area of Lassa virus (LASV) circulation is expanding, with the emergence of highly pathogenic new LASV lineages. Benin recently became an endemic country for LASV and has seen the emergence of a new LASV lineage (VII). The first two outbreaks in 2014 and 2016 showed a relatively high mortality rate compared to other outbreaks. We infected cynomolgus monkeys with two strains belonging to lineage II and lineage VII that were isolated from deceased patients during the 2016 outbreak in Benin. The lineage VII strain (L7) caused uniform mortality. Death was associated with uncontrolled viral replication, unbalanced inflammatory responses characterized by increased concentrations of pro- and anti-inflammatory mediators, and the absence of efficient immune responses, resembling the pathogenesis associated with the prototypic Josiah strain in monkeys. The lineage II strain (L2) showed apparently lower virulence than its counterpart, with a prolonged time to death and a lower mortality rate. Prolonged survival was associated with better control of viral replication, a moderate inflammatory response, and efficient T-cell responses. Transcriptomic analyses also highlighted important differences in the immune responses associated with the outcome. Both strains caused strong inflammation in several organs. Notably, meningitis and encephalitis were observed in the cerebral cortex and cerebellum in all monkeys, independently of the outcome. Due to their apparently high pathogenicity, emerging strains from lineage VII should be considered in preclinical vaccine testing. Lineage II would also be beneficial in pathogenesis studies to study the entire spectrum of Lassa fever severity.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Humanos , Virus Lassa/genética , Macaca fascicularis , Replicación Viral
5.
Viruses ; 14(3)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35337059

RESUMEN

Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium.


Asunto(s)
Arenaviridae , Arenavirus , Fiebre de Lassa , Animales , Arenaviridae/genética , Células Endoteliales , Humanos , Virus Lassa , Proteómica
6.
Front Neurol ; 11: 641, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793093

RESUMEN

Introduction: Impulse control disorders (ICDs) frequently complicate dopamine agonist (DA) therapy in Parkinson's disease (PD). There is growing evidence of a high heritability for ICDs in the general population and in PD. Variants on genes belonging to the reward pathway have been shown to account for part of this heritability. We aimed to identify new pathways associated with ICDs in PD. Methods: Thirty-six Parkinsonian patients on DA therapy with (n = 18) and without ICDs (n = 18) matched on age at PD's onset, and gender was selected to represent the most extreme phenotypes of their category. Exome sequencing was performed, and variants with a strong functional impact in brain-expressed genes were selected. Allele frequencies and their distribution in genes and pathways were analyzed with single variant and SKAT-O tests. The 10 most associated variants, genes, and pathways were retained for replication in the Parkinson's progression markers initiative (PPMI) cohort. Results: None of markers tested passed the significance threshold adjusted for multiple comparisons. However, the "Adenylate cyclase activating" pathway, one of the top associated pathways in the discovery data set (p = 1.6 × 10-3) was replicated in the PPMI cohort and was significantly associated with ICDs in a post hoc pooled analysis (combined p-value 3.3 × 10-5). Two of the 10 most associated variants belonged to genes implicated in cAMP and ERK signaling (rs34193571 in RasGRF2, p = 5 × 10-4; rs1877652 in PDE2A, p = 8 × 10-4) although non-significant after Bonferroni correction. Conclusion: Our results suggest that genes implicated in the signaling pathways linked to G protein-coupled receptors participate to genetic susceptibility to ICDs in PD.

7.
Neuro Oncol ; 21(8): 1039-1048, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31102405

RESUMEN

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is a rare form of extra-nodal non-Hodgkin lymphoma. PCNSL is a distinct subtype of non-Hodgkin lymphoma, with over 95% of tumors belonging to the diffuse large B-cell lymphoma (DLBCL) group. We have conducted a genome-wide association study (GWAS) on immunocompetent patients to address the possibility that common genetic variants influence the risk of developing PCNSL. METHODS: We performed a meta-analysis of 2 new GWASs of PCNSL totaling 475 cases and 1134 controls of European ancestry. To increase genomic resolution, we imputed >10 million single nucleotide polymorphisms using the 1000 Genomes Project combined with UK10K as reference. In addition we performed a transcription factor binding disruption analysis and investigated the patterns of local chromatin by Capture Hi-C data. RESULTS: We identified independent risk loci at 3p22.1 (rs41289586, ANO10, P = 2.17 × 10-8) and 6p25.3 near EXOC2 (rs116446171, P = 1.95 x 10-13). In contrast, the lack of an association between rs41289586 and DLBCL suggests distinct germline predisposition to PCNSL and DLBCL. We found looping chromatin interactions between noncoding regions at 6p25.3 (rs11646171) with the IRF4 promoter and at 8q24.21 (rs13254990) with the MYC promoter, both genes with strong relevance to B-cell tumorigenesis. CONCLUSION: To our knowledge this is the first study providing insight into the genetic predisposition to PCNSL. Our findings represent an important step in defining the contribution of common genetic variation to the risk of developing PCNSL.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/genética , Estudio de Asociación del Genoma Completo , Humanos , Linfoma de Células B Grandes Difuso/genética
8.
Blood Cells Mol Dis ; 75: 1-10, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30502564

RESUMEN

Primary CNS lymphomas (PCNSL) are rare and poor prognosis diffuse large B-cell lymphomas. Because of the brain tumor environment and the restricted distribution of drugs in the CNS, specific PCNSL patient-derived orthotopic xenograft (PDOX) models are needed for preclinical research to improve the prognosis of PCNSL patients. PCNSL patient specimens (n = 6) were grafted in the caudate nucleus of immunodeficient nude mice with a 83% rate of success, while subcutaneous implantation in nude mice of human PCNSL sample did not generate lymphoma, supporting the role of the brain microenvironment in the PCNSL physiopathology. PDOXs showed diffuse infiltration of B-cell lymphoma cells in the brain parenchyma. Each model had a unique mutational signature for genes in the BCR and NF-κB pathways and retained the mutational profile of the primary tumor. The models can be stored as cryopreserved biobank. Human IL-10 levels measured in the plasma of PCNSL-PDOX mice showed to be a reliable tool to monitor the tumor burden. Treatment response could be measured after a short treatment with the targeted therapy ibrutinib. In summary, we established a panel of human PCNSL-PDOX models that capture the histological and molecular characteristics of the disease and that proved suitable for preclinical experiments. Our methods of generation and characterization will enable the generation of additional PDOX-PCNSL models, essential tools for cognitive and preclinical drug discovery.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Xenoinjertos/patología , Linfoma de Células B Grandes Difuso/patología , Adenina/análogos & derivados , Animales , Núcleo Caudado , Xenoinjertos/efectos de los fármacos , Humanos , Interleucina-10/análisis , Ratones , Ratones Desnudos , Piperidinas , Pronóstico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Carga Tumoral
9.
Br J Cancer ; 119(1): 105-113, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29899393

RESUMEN

BACKGROUND: Paraneoplastic neurological syndromes are rare conditions where an autoimmune reaction against the nervous system appears in patients suffering from a tumour, but not linked to the spreading of the tumour. A break in the immune tolerance is thought to be the trigger. METHODS: The transcriptomic profile of 12 ovarian tumours (OT) from patients suffering from paraneoplastic cerebellar degeneration (PCD) linked to anti-Yo antibodies (anti-Yo PCD OT) was compared with 733 ovarian tumours (OT control) from different public databases using linear model analysis. RESULTS: A prominent significant transcriptomic over-representation of CD8+ and Treg cells was found in anti-Yo PCD OT, as compared to the OT control. However, the overall degree of immune cell infiltration was similar, according to the ESTIMATE immune score. We also found an under-representation of M2 macrophages in anti-Yo PCD OT. Furthermore, the differentially expressed genes were enriched for AIRE-related genes, a well-known transcription factor associated with a broad range of autoimmune diseases. Finally, we found that the differentially expressed genes were correlated to the transcriptomic profiling of the cerebellar structures. CONCLUSIONS: Our data pinpointed the enrichment of acquired immune response, particularly high density of CD8+ lymphocytes, and high-level expression of CDR-related antigens in anti-Yo PCD OT.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/genética , Degeneración Cerebelosa Paraneoplásica/genética , Transcriptoma/genética , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Análisis por Micromatrices , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas del Tejido Nervioso/inmunología , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Degeneración Cerebelosa Paraneoplásica/complicaciones , Degeneración Cerebelosa Paraneoplásica/inmunología , Degeneración Cerebelosa Paraneoplásica/patología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Transcriptoma/inmunología , Proteína AIRE
10.
Nat Commun ; 9(1): 2371, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915258

RESUMEN

Chordoid glioma (ChG) is a characteristic, slow growing, and well-circumscribed diencephalic tumor, whose mutational landscape is unknown. Here we report the analysis of 16 ChG by whole-exome and RNA-sequencing. We found that 15 ChG harbor the same PRKCA D463H mutation. PRKCA encodes the Protein kinase C (PKC) isozyme alpha (PKCα) and is mutated in a wide range of human cancers. However the hot spot PRKCA D463H mutation was not described in other tumors. PRKCA D463H is strongly associated with the activation of protein translation initiation (EIF2) pathway. PKCαD463H mRNA levels are more abundant than wild-type PKCα transcripts, while PKCαD463H is less stable than the PCKαWT protein. Compared to PCKαWT, the PKCαD463H protein is depleted from the cell membrane. The PKCαD463H mutant enhances proliferation of astrocytes and tanycytes, the cells of origin of ChG. In conclusion, our study identifies the hallmark mutation for chordoid gliomas and provides mechanistic insights on ChG oncogenesis.


Asunto(s)
Neoplasias del Ventrículo Cerebral/genética , Glioma/genética , Proteína Quinasa C-alfa/genética , Adulto , Anciano , Proliferación Celular , Células Cultivadas , Neoplasias del Ventrículo Cerebral/metabolismo , Femenino , Glioma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mutación Puntual , Proteína Quinasa C-alfa/metabolismo
11.
Neuro Oncol ; 20(8): 1092-1100, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29432597

RESUMEN

Background: Primary central nervous system lymphoma (PCNSL) represents a particular entity within non-Hodgkin lymphomas and is associated with poor outcome. The present study addresses the potential clinical relevance of chimeric transcripts in PCNSL discovered by using RNA sequencing (RNA-seq). Methods: Seventy-two immunocompetent and newly diagnosed PCNSL cases were included in the present study. Among them, 6 were analyzed by RNA-seq to detect new potential fusion transcripts. We confirmed the results in the remaining 66 PCNSL. The gene fusion was validated by fluorescence in situ hybridization (FISH) using formalin-fixed paraffin-embedded (FFPE) samples. We assessed the biological and clinical impact of one new gene fusion. Results: We identified a novel recurrent gene fusion, E26 transformation-specific translocation variant 6-immunoglobulin heavy chain (ETV6-IgH). Overall, ETV6-IgH was found in 13 out of 72 PCNSL (18%). No fusion conserved an intact functional domain of ETV6, and ETV6 was significantly underexpressed at gene level, suggesting an ETV6 haploinsufficiency mechanism. The presence of the gene fusion was also validated by FISH in FFPE samples. Finally, PCNSL samples harboring ETV6-IgH showed a better prognosis in multivariate analysis, P = 0.03, hazard ratio = 0.33, 95% CI = 0.12-0.88. The overall survival at 5 years was 69% for PCNSL harboring ETV6-IgH versus 29% for samples without this gene fusion. Conclusions: ETV6-IgH is a new potential surrogate marker of PCNSL with favorable prognosis with ETV6 haploinsufficiency as a possible mechanism. The potential clinical impact of ETV6-IgH should be validated in larger prospective studies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Sistema Nervioso Central/genética , Cadenas Pesadas de Inmunoglobulina/genética , Linfoma de Células B Grandes Difuso/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Neoplasias del Sistema Nervioso Central/patología , Femenino , Estudios de Seguimiento , Humanos , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Proteína ETS de Variante de Translocación 6
12.
Acta Neuropathol ; 134(5): 691-703, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28638988

RESUMEN

Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Epigenómica/métodos , Genómica/métodos , Glioma/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Metilación de ADN , Glioma/genética , Glioma/patología , Humanos , Nanoporos , Regiones Promotoras Genéticas
14.
Ann Neurol ; 77(4): 675-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25623524

RESUMEN

OBJECTIVE: The DEPDC5 (DEP domain-containing protein 5) gene, encoding a repressor of the mTORC1 signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies. We aimed to further extend the role of DEPDC5 to focal cortical dysplasias (FCDs). METHODS: Seven patients from 4 families with DEPDC5 mutations and focal epilepsy associated with FCD were recruited and investigated at the clinical, neuroimaging, and histopathological levels. The DEPDC5 gene was sequenced from genomic blood and brain DNA. RESULTS: All patients had drug-resistant focal epilepsy, 5 of them underwent surgery, and 1 had a brain biopsy. Electroclinical phenotypes were compatible with FCD II, although magnetic resonance imaging (MRI) was typical in only 4 cases. Histopathology confirmed FCD IIa in 2 patients (including 1 MRI-negative case) and showed FCD I in 2 other patients, and remained inconclusive in the last 2 patients. Three patients were seizure-free postsurgically, and 1 had a worthwhile improvement. Sequencing of blood DNA revealed truncating DEPDC5 mutations in all 4 families; 1 mutation was found to be mosaic in an asymptomatic father. A brain somatic DEPDC5 mutation was identified in 1 patient in addition to the germline mutation. INTERPRETATION: Germline, germline mosaic, and brain somatic DEPDC5 mutations may cause epilepsy associated with FCD, reinforcing the link between mTORC1 pathway and FCDs. Similarly to other mTORopathies, a "2-hit" mutational model could be responsible for cortical lesions. Our study also indicates that epilepsy surgery is a valuable alternative in the treatment of drug-resistant DEPDC5-positive focal epilepsies, even if the MRI is unremarkable.


Asunto(s)
Epilepsias Parciales/diagnóstico , Epilepsias Parciales/genética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Proteínas Represoras/genética , Adolescente , Adulto , Niño , Femenino , Proteínas Activadoras de GTPasa , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
15.
Neurol Genet ; 1(4): e35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27066572

RESUMEN

OBJECTIVE: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. METHODS: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. RESULTS: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. CONCLUSIONS: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism.

16.
Neurobiol Aging ; 35(12): 2882.e13-2882.e15, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25158920

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are adult-onset neurodegenerative diseases with overlapping clinical characteristics. They share common genetic causes and pathologic hallmarks such as TDP-43 neuronal accumulations. Recently, exome analysis identified mutations in matrin 3 (MATR3) gene in patients with familial ALS, suggesting a role for this gene in the pathogenesis of the disease. MATR3 is a nuclear matrix protein with DNA and RNA binding domains that interacts with TDP-43. To confirm the contribution of MATR3 to ALS, we studied a French cohort of 153 familial ALS or ALS/FTLD patients, without finding any variant. We conclude that mutations in MATR3 are rare in French familial ALS and ALS with FTLD patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Degeneración Lobar Frontotemporal/genética , Estudios de Asociación Genética/métodos , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas de Unión al ARN/genética , Estudios de Cohortes , Exones/genética , Francia , Predisposición Genética a la Enfermedad/genética , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...