Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(3): eadj4960, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38232174

RESUMEN

Revolutionary advancements in underwater imaging, robotics, and genomic sequencing have reshaped marine exploration. We present and demonstrate an interdisciplinary approach that uses emerging quantitative imaging technologies, an innovative robotic encapsulation system with in situ RNA preservation and next-generation genomic sequencing to gain comprehensive biological, biophysical, and genomic data from deep-sea organisms. The synthesis of these data provides rich morphological and genetic information for species description, surpassing traditional passive observation methods and preserved specimens, particularly for gelatinous zooplankton. Our approach enhances our ability to study delicate mid-water animals, improving research in the world's oceans.


Asunto(s)
Robótica , Zooplancton , Animales , Océanos y Mares , Zooplancton/genética , Agua , Gelatina
2.
J Exp Biol ; 226(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37655651

RESUMEN

Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about the kinematics of the individual jets produced by nectophores (the swimming bells of siphonophores) or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the five species considered, nectophores located along the same side of the nectosomal axis (i.e. axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion.


Asunto(s)
Ecosistema , Hidrozoos , Animales , Fenómenos Biomecánicos , Natación
3.
Integr Org Biol ; 5(1): obad023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521145

RESUMEN

Morphological features are the primary identifying properties of most animals and key to many comparative physiological studies, yet current techniques for preservation and documentation of soft-bodied marine animals are limited in terms of quality and accessibility. Digital records can complement physical specimens, with a wide array of applications ranging from species description to kinematics modeling, but options are lacking for creating models of soft-bodied semi-transparent underwater animals. We developed a lab-based technique that can live-scan semi-transparent, submerged animals, and objects within seconds. To demonstrate the method, we generated full three-dimensional reconstructions (3DRs) of an object of known dimensions for verification, as well as two live marine animals-a siphonophore and an amphipod-allowing detailed measurements on each. Techniques like these pave the way for faster data capture, integrative and comparative quantitative approaches, and more accessible collections of fragile and rare biological samples.

4.
R Soc Open Sci ; 8(10): 210541, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34659778

RESUMEN

Annelids are predominantly found along with the seafloor, but over time have colonized a vast diversity of habitats, such as the water column, where different modes of locomotion are necessary. Yet, little is known about their potential muscular adaptation to the continuous swimming behaviour required in the water column. The musculature and motility were examined for five scale worm species of Polynoidae (Aphroditiformia, Annelida) found in shallow waters, deep sea or caves and which exhibit crawling, occasional swimming or continuous swimming, respectively. Their parapodial musculature was reconstructed using microCT and computational three-dimensional analyses, and the muscular functions were interpreted from video recordings of their locomotion. Since most benthic scale worms are able to swim for short distances using body and parapodial muscle movements, suitable musculature for swimming is already present. Our results indicate that rather than rearrangements or addition of muscles, a shift to a pelagic lifestyle is mainly accompanied by structural loss of muscle bundles and density, as well as elongation of extrinsic dorsal and ventral parapodial muscles. Our study documents clear differences in locomotion and musculature among closely related annelids with different lifestyles as well as points to myoanatomical adaptations for accessing the water column.

5.
Integr Comp Biol ; 61(5): 1674-1688, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34048537

RESUMEN

Metachronal motion is used across a wide range of organisms for a diverse set of functions. However, despite its ubiquity, analysis of this behavior has been difficult to generalize across systems. Here we provide an overview of known commonalities and differences between systems that use metachrony to generate fluid flow. We also discuss strategies for standardizing terminology and defining future investigative directions that are analogous to other established subfields of biomechanics. Finally, we outline key challenges that are common to many metachronal systems, opportunities that have arisen due to the advent of new technology (both experimental and computational), and next steps for community development and collaboration across the nascent network of metachronal researchers.


Asunto(s)
Cilios , Animales , Fenómenos Biomecánicos , Movimiento (Física)
6.
Integr Comp Biol ; 61(5): 1658-1673, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33956943

RESUMEN

Aquatic animals have developed a wide array of adaptations specific to life underwater, many of which are related to moving in the water column. Different swimming methods have emerged, such as lift-based flapping, drag-based body undulations, and paddling. Patterns occur across scales and taxa, where animals with analogous body features use similar locomotory methods. Metachronal paddling is one such wide-spread propulsion mechanism, occurring in taxa as diverse as ctenophores, crustaceans, and polychaetes. Sequential movement of multiple, near identical appendages, allows for steady swimming through phase-offsets between adjacent propulsors. The soft-bodied, holopelagic polychaete Tomopteris has two rows of segmental appendages (parapodia) positioned on opposite sides along its flexible body that move in a metachronal pattern. The outer one-third of their elongate parapodia consist of two paddle-like pinnules that can be spread or, when contracted, fold together to change the effective width of the appendage. Along with metachronal paddling, tomopterid bodies undulate laterally, and by using high speed video and numerical modeling, we seek to understand how these two behaviors combine to generate effective swimming. We collected animals using deep-diving remotely operated vehicles, and recorded video data in shore- and ship-based imaging laboratories. Kinematics were analyzed using landmark tracking of features in the video data. We determined that parapodia are actively moved to generate thrust and pinnules are actively spread and contracted to create differences in drag between power and recovery strokes. At the same time, the body wave increases the parapodium stroke angle and extends the parapodia into undisturbed water adjacent to the body, enhancing thrust. Based on kinematics measurements used as input to a 1D numerical model of drag-based swimming, we found that spreading of the pinnules during the power stroke provides a significant contribution to propulsion, similar to the contribution provided by the body wave. We conclude that tomopterids combine two different propulsive modes, which are enabled by their flexible body plan. This makes their anatomy and kinematics of interest not only for biologists, but also for soft materials and robotics engineers.


Asunto(s)
Poliquetos/fisiología , Natación , Animales , Fenómenos Biomecánicos , Extremidades , Locomoción
7.
Nature ; 583(7814): 78-82, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494011

RESUMEN

Many animals build complex structures to aid in their survival, but very few are built exclusively from materials that animals create 1,2. In the midwaters of the ocean, mucoid structures are readily secreted by numerous animals, and serve many vital functions3,4. However, little is known about these mucoid structures owing to the challenges of observing them in the deep sea. Among these mucoid forms, the 'houses' of larvaceans are marvels of nature5, and in the ocean twilight zone giant larvaceans secrete and build mucus filtering structures that can reach diameters of more than 1 m6. Here we describe in situ laser-imaging technology7 that reconstructs three-dimensional models of mucus forms. The models provide high-resolution views of giant larvacean houses and elucidate the role that house structure has in food capture and predator avoidance. Now that tools exist to study mucus structures found throughout the ocean, we can shed light on some of nature's most complex forms.


Asunto(s)
Organismos Acuáticos/metabolismo , Moco/metabolismo , Urocordados/anatomía & histología , Urocordados/metabolismo , Animales , Ciclo del Carbono , Conducta Alimentaria , Cadena Alimentaria , Imagenología Tridimensional/instrumentación , Rayos Láser , Conformación Molecular , Moco/química , Océanos y Mares , Conducta Predatoria , Agua de Mar
8.
Phys Rev E ; 100(6-1): 063208, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962408

RESUMEN

We report on the deflection of laser pulses and accelerated electrons in a laser-plasma accelerator (LPA) by the effects of laser pulse front tilt and transverse density gradients. Asymmetry in the plasma index of refraction leads to laser steering, which can be due to a density gradient or spatiotemporal coupling of the laser pulse. The transverse forces from the skewed plasma wave can also lead to electron deflection relative to the laser. Quantitative models are proposed for both the laser and electron steering, which are confirmed by particle-in-cell simulations. Experiments with the BELLA Petawatt Laser are presented which show controllable 0.1-1 mrad laser and electron beam deflection from laser pulse front tilt. This has potential applications for electron beam pointing control, which is of paramount importance for LPA applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...