Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(49): e202311123, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37823245

RESUMEN

The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.

2.
Biochem J ; 480(8): 495-520, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37022297

RESUMEN

Isoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model. Treatment of plants with pathway-specific inhibitors and analysis of the effects of various light conditions indicated distinct biosynthetic origin of Prens and Dols. Feeding with deuteriated, pathway-specific precursors revealed that Dols, present in leaves and roots, were derived from both MEP and MVA pathways and their relative contributions were modulated in response to precursor availability. In contrast, Prens, present in leaves, were almost exclusively synthesized via the MEP pathway. Furthermore, results obtained using a newly introduced here 'competitive' labeling method, designed so as to neutralize the imbalance of metabolic flow resulting from feeding with a single pathway-specific precursor, suggest that under these experimental conditions one fraction of Prens and Dols is synthesized solely from endogenous precursors (deoxyxylulose or mevalonate), while the other fraction is synthesized concomitantly from endogenous and exogenous precursors. Additionally, this report describes a novel methodology for quantitative separation of 2H and 13C distributions observed for isotopologues of metabolically labeled isoprenoids. Collectively, these in planta results show that Dol biosynthesis, which uses both pathways, is significantly modulated depending on pathway productivity, while Prens are consistently derived from the MEP pathway.


Asunto(s)
Arabidopsis , Dolicoles , Dolicoles/metabolismo , Poliprenoles/metabolismo , Ácido Mevalónico/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Terpenos/metabolismo
3.
J Agric Food Chem ; 69(48): 14689-14698, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34841873

RESUMEN

Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determination of a 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. HAAs are generated in meat and fish processed at high temperatures. They are considered to be potent hazardous carcinogens. The MIP film was prepared by potentiodynamic electropolymerization of a pre-polymerization complex of two adenine- and one thymine-substituted bis(2,2'-bithien-5-yl)methane functional monomer molecules with one 7,8-DiMeIQx template molecule, in the presence of the 2,4,5,2',4',5'-hexa(thiophene-2-yl)-3,3'-bithiophene cross-linking monomer, in solution. The as-formed MIP chemosensor allowed for the selective impedimetric determination of 7,8-DiMeIQx in the 47 to 400 µM linear dynamic concentration range with a limit of detection of 15.5 µM. The chemosensor was successfully applied for 7,8-DiMeIQx determination in the pork meat extract as a proof of concept.


Asunto(s)
Impresión Molecular , Carne de Cerdo , Carne Roja , Aminas , Animales , ADN , Electrodos , Polímeros Impresos Molecularmente , Porcinos
4.
Analyst ; 146(17): 5337-5346, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34323262

RESUMEN

Interactions between anions and synthetic macrocyclic receptors belong to the extensively explored area of research due to the particularly important functions of anions in biological and environmental sciences. Structures of anion-macrocycle complexes are closely related to their function, highlighting the importance of structural analysis of the complexes. Here, we discuss the application of ion mobility mass spectrometry (IM-MS) and theoretical calculations to the structural analysis of tetralactam macrocycles (M) with varying flexibility and structural properties, and their complexes with anions [M + X]-. Collision cross section (CCS) values obtained from both direct drift tube (DT) and indirect using traveling-wave (TW) IM-MS measurements supplemented by theoretical calculations were successfully used to describe the structural properties of various macrocycle-anion complexes, proving the suitability of the IM-MS approach for sensitive, selective, and fast detection of anion complexes and characterization of their structures and conformations.


Asunto(s)
Espectrometría de Movilidad Iónica , Aniones , Espectrometría de Masas , Conformación Molecular
5.
Molecules ; 25(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092140

RESUMEN

In this study, we present a complete description of the addition of a model nucleophile to the nitroaromatic ring in positions occupied either by hydrogen (the first step of the SNAr-H reaction) or a leaving group (SNAr-X reaction) using theoretical parameters including aromaticity (HOMA), electrophilicity and nucleophilicity indices. It was shown both experimentally and by our calculations, including kinetic isotope effect modeling, that the addition of a nucleophile to the electron-deficient aromatic ring is the rate limiting step of both SNAr-X and SNAr-H reactions when the fast transformation of σH-adduct into the products is possible due to the specific reaction conditions, so this is the most important step of the entire reaction. The results described in this paper are helpful for better understanding of the subtle factors controlling the reaction direction and rate.


Asunto(s)
Nitrocompuestos/química , Electrones , Hidrógeno/química , Cinética
6.
iScience ; 23(6): 101198, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32526701

RESUMEN

Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa (RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific ablation of Dhdds would cause retinal degeneration due to diminished dolichol-dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-specific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophysiological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid photoreceptor degeneration ensued, resulting in almost complete loss of rods and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by PN 4 weeks in Dhddsflx/flx iCre+ mice, relative to controls; despite this, N-glycosylation of retinal proteins, including opsin (the dominant rod-specific glycoprotein), persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional mechanistic view of RP59 as a congenital disorder of glycosylation.

7.
J Org Chem ; 85(14): 8990-9000, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32527091

RESUMEN

The gas-phase affinities of different types of anions X- (halogen anions, oxoanions, and hydrogenated anions) toward a model tetralactam-based macrocycle receptor (1), defined in terms of stability of an anion-receptor complex (1 + X-) against its disintegration, were evaluated by dissociation studies using a mass spectrometry-based methodology and supported by theoretical calculations (density functional theory-PBE0). The gas-phase complex with Cl- was found to be tailor-made for the macrocycle 1, while 1 + SA- (SA- = salicylate anion) and 1 + HSO4- were the weakest ones. Other complexes displayed a relatively low-stability dispersion (<1.2 kcal·mol-1). The 1/εr approach of the electrostatic contribution scaling method was used to predict the stability trends in a dimethyl sulfoxide solvent from the gas-phase binding energy partition using the symmetry-adapted perturbation theory. High deformation energy and differences in solvation energies were suggested to be the main sources of inconsistency in the predicted and experimental stabilities of 1 + F- and 1 + H2PO4- complexes.

8.
Chemosphere ; 251: 126439, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32443254

RESUMEN

The molecular characterization of secondary organic aerosol (SOA) is based mainly on LC-MS analyses of particulate matter (PM) samples collected with aerosol samplers. Several studies have analyzed atmospheric waters, including rain and cloud water, for the presence of SOA components, however, no separation techniques were used making identification of the individual components in these complex mixtures impossible. We have applied our improved UHPLC-HR-MS methodology to analyze atmospheric precipitates (hailstone, rain and snow), as well as SOA collected with high-volume samplers. We achieved sensitivity levels and separation efficiencies that were sufficient for molecular-level identification of individual compounds. Tracing commonly known SOA markers such as organosulfates (OS), C4-C6 dicarboxylic acids and terpenoic acids revealed that the chromatographic profiles for both atmospheric precipitate and PM samples were very similar, with both giving similar component ratios, especially for OS. We also demonstrated that SOA markers can be detected directly from raw rain samples. Our results show that LC-MS techniques are suitable for the convenient analysis of atmospheric precipitates containing SOA markers at the molecular level. It complements traditional SOA analyses and provides additional sampling opportunities which will no doubt allow for better elucidation of chemical transformations of volatile organic compounds in the atmosphere.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Atmósfera/química , Cromatografía Liquida , Espectrometría de Masas , Material Particulado/análisis , Lluvia , Nieve , Compuestos Orgánicos Volátiles/análisis , Tiempo (Meteorología)
9.
Sci Total Environ ; 730: 139175, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388384

RESUMEN

Iodine plays an important role in the environment and life. In the atmosphere, iodine is present in the form of inorganic and organic compounds. In this study, we have analyzed atmospheric wet precipitation using ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) for the presence of organoiodine compounds and found that the main organoiodine compound in atmospheric waters is 2-iodomalondialdehyde. The structure of this compound is supported by independent synthesis. A plausible mechanism of the formation of 2-iodomalondialdehyde from acrolein, iodine and water in the atmosphere is proposed. Our measurements reveal the presence of ten other organoiodine compounds in atmospheric wet precipitation but their structures remain unknown, mainly due to very low concentrations prohibiting mass spectrometry studies. The results described in this paper enhance our knowledge about the circulation of iodine in nature. It provides insights into the chemical nature of soluble organic iodine, whose presence in the atmosphere has been known for two decades. In addition, it also shows the potential of using liquid chromatography coupled to mass spectrometry (LC-MS) technique to further explore iodine chemistry in the atmosphere.

10.
Chemistry ; 26(53): 12150-12157, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32339360

RESUMEN

Diels-Alder cycloaddition of various dienophiles to the bay region of polycyclic aromatic hydrocarbons (PAHs) is a particularly effective and useful tool for the modification of the structure of PAHs and thereby their final properties. The Diels-Alder cycloaddition belongs to the single-step annulative π-extension (APEX) reactions and represents the maximum in synthetic efficiency for the constructions of π-extended PAHs including functionalised ones, nanographenes, and π-extended fused heteroarenes. Herein we report new applications of the APEX strategy for the synthesis of derivatives of 1,2-diarylbenzo[ghi]perylene, 1,2-diarylbenzo[ghi]perylenebisimide and 1,2-disubstituted-benzo[j]coronene. Namely, the so far unknown cycloaddition of 1,2-diarylacetylenes into the perylene and perylenebisimide bay regions was used. 1,2-Disubstituted-benzo[j]coronenes were obtained via cycloaddition of benzyne into 1,2-diarylbenzo[ghi]perylenes by using a new highly effective system for benzyne generation and/or high pressure conditions. Moreover, we report an unprecedented Diels-Alder cycloaddition-cycloaromatisation domino-type reaction between 1,4-(9,9-dialkylfluoren-3-yl)-1,3-butadiynes and perylene. The obtained diaryl-substituted core-extended PAHs were characterised by DFT calculation as well as electrochemical and spectroscopic measurements.

11.
Environ Sci Technol ; 54(3): 1415-1424, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31917550

RESUMEN

Isoprene (C5H8) is the main non-methane hydrocarbon emitted into the global atmosphere. Despite intense research, atmospheric transformations of isoprene leading to secondary organic aerosol (SOA) are still not fully understood, including its multiphase chemical reactions. Herein, we report on the detailed structural characterization of atmospherically relevant isoprene-derived organosulfates (OSs) with a molecular weight (MW) of 212 (C5H8SO7), which are abundantly present in both ambient fine aerosol (PM2.5) and laboratory-generated isoprene SOA. The results obtained from smog chamber-generated isoprene SOA and aqueous-phase laboratory experiments coupled to the S(IV)-autooxidation chemistry of isoprene, 3-methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone, allowed us for the first time to fully elucidate the isomeric structures of the MW 212 OSs. By applying liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry, we firmly confirmed six positional isomers of the MW 212 OSs in PM2.5 collected from different sites in Europe and the United States. Our results also show that despite the low solubility of isoprene in water, aqueous-phase or multiphase chemistry can play an important role in the formation of OSs from isoprene. Possible formation mechanisms for the MW 212 OSs are also tentatively proposed.


Asunto(s)
Hemiterpenos , Aerosoles , Butadienos , Europa (Continente) , Lactonas , Peso Molecular , Pentanos
12.
Chemosphere ; 214: 1-9, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30248553

RESUMEN

In-cloud processing of volatile organic compounds is one of the significant routes leading to secondary organic aerosol (SOA) in the lower troposphere. In this study, we demonstrate that two atmospherically relevant α,ß-unsaturated carbonyls, i.e., but-3-en-2-on (methyl vinyl ketone, MVK) and 2-methylopropenal (methacrolein, MACR), undergo sulfate radical-induced transformations in dilute aqueous systems under photochemical conditions to form organosulfates previously identified in ambient aerosols and SOA generated in smog chambers. The photooxidation was performed under sun irradiation in unbuffered aqueous solutions containing carbonyl precursors at a concentration of 0.2 mmol and peroxydisulfate as a source of sulfate radicals (SO4-) at a concentration of 0.95 mmol. UV-vis analysis of solutions showed the fast decay of unsaturated carbonyl precursors in the presence of sulfate radicals. The observation confirms the capacity of sulfate radicals to transform the organic compounds into SOA components in atmospheric waters. Detailed interpretation of high-resolution negative ion electrospray ionization tandem mass spectra allowed to assign molecular structures to multiple aqueous organosulfate products, including an abundant isoprene-derived organosulfate C4H8SO7 detected at m/z 199. The results highlight the solar aqueous-phase reactions as a potentially significant route for biogenic SOA production in clouds at locations where isoprene oxidation occurs. A recent modelling study suggests that such processes could likely contribute to 20-30 Tg year-1 production of SOA, referred to as aqSOA, which is a non-negligible addition to the still underestimated budget of atmospheric aerosol.


Asunto(s)
Acroleína/análogos & derivados , Contaminantes Atmosféricos/química , Butanonas/química , Agua/química , Acroleína/química , Contaminantes Atmosféricos/análisis , Oxidación-Reducción , Agua/análisis
13.
Int J Syst Evol Microbiol ; 68(12): 3935-3941, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30394866

RESUMEN

An aerobic, Gram-stain-negative, rod-shaped, non-motile, mesophilic soil bacterium, strain WS5A3pT, was isolated from a pesticide burial site in north-west Poland. The strain grew at 12-37 °C, at pH 8-9 and with 0-2 % (w/v) NaCl. The main fatty acids detected in WS5A3pT were summed feature 3, summed feature 8 and C16 : 0. The major respiratory quinone was Q-10 and major polar lipids were phosphatidylethanolamine, sphingoglycolipid and phosphatidylglycerol. The G+C content of the genome was 65.1 mol%. Phylogenetic pairwise distance analysis of the 16S rRNA gene placed this strain within the genus Sphingopyxis, with the highest similarity to Sphingopyxis witflariensis W-50T (98.8 %), Sphingopyxis bauzanensis BZ30T and Sphingopyxis ginsengisoli Gsoil 250T (98.3 %) and Sphingopyxis granuli NBRC 100800T (98.09 %). Genomic similarity analyses using ANIb and dDDH algorithms indicated levels of similarity of 81.44, 80.84 and 81.16 % between WS5A3pT and S. witflariensis, S. bauzanensisand S. granuli, respectively for average nucleotide identity and 25.90, 25.00 and 26.10 % for digital DNA-DNA hybridization. Based on the phylogenetic and phenotypic data, strain WS5A3pT should be considered as a representative of a novel Sphingopyxis species. The name Sphingopyxis lindanitolerans sp. nov. is proposed with the type strain WS5A3pT (=DSM 106274T=PCM 2932T).


Asunto(s)
Residuos Peligrosos , Plaguicidas , Filogenia , Microbiología del Suelo , Sphingomonadaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingomonadaceae/genética , Sphingomonadaceae/aislamiento & purificación , Ubiquinona/análogos & derivados , Ubiquinona/química
14.
Chemistry ; 24(38): 9622-9631, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29663546

RESUMEN

Six novel fluoranthene derivatives, namely, three terminally substituted and three bis(fluoranthene) units with fluorene, bithiophene, and carbazole spacers, were obtained through [2+2+2] cycloaddition and characterized completely. Based on the conducted studies, the obtained derivatives can be classified as donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) systems, in which the fluoranthene unit acts as an electron-withdrawing unit. The optical results revealed that novel fluoranthene derivatives absorb light in the range λ=236-417 nm, which originates from a π→π* transition within the conjugated system. The compounds exhibit fluorescence that range from deep blue to green, which mainly arises from intramolecular charge transfer (ICT) states. High Stoke shifts and high quantum yields in solution (ϕ=0.22-0.57) and in the solid state (ϕ=0.18-0.44) have been observed for fluoranthene derivatives. All the derivatives display multistep oxidation processes at low potentials. The electronic structure of the presented compounds is additionally supported by time-dependent DFT computations.

15.
Anal Chem ; 90(5): 3416-3423, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29429345

RESUMEN

Secondary organic aerosol (SOA) is an important yet not fully characterized constituent of atmospheric particulate matter. A number of different techniques and chromatographic methods are currently used for the analysis of SOA, so the comparison of results from different laboratories poses a challenge. So far, tentative structures have been suggested for many organosulfur compounds that have been identified as markers for the formation of SOA, including isoprene-derived organosulfates. Despite the effectiveness and robustness of LC-MS/MS analyses, the structural profiling of positional isomers of recently discovered organosulfates with molecular weights (MWs) of 214 and 212 from isoprene was entirely unsuccessful. Here, we developed a UHPLC combined with high-resolution tandem mass spectrometric method that significantly improves the separation efficiency and detection sensitivity of these compounds in aerosol matrices. We discovered that selection of the proper solvent for SOA extracts was a key factor in improving the separation parameters. Later, we took advantage of the enhanced sensitivity, combined with a short scan time window, to perform detailed structural mass-spectrometric studies. For the first time, we elucidate a number of isomers of the MW 214 and the MW 212 organosulfates and provide strong evidence for their molecular structures. The structure of trihydroxyketone sulfate MW 214 that we propose has not been previously reported. The methods we designed can be easily applied in other laboratories to foster an easy comparison of related qualitative and quantitative data obtained throughout the world.

16.
J Am Soc Mass Spectrom ; 29(3): 588-599, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29313204

RESUMEN

Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction (m/z 47), SN2 (m/z 79), and E2 elimination - addition sequence of reactions (m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. Graphical Abstract ᅟ.

17.
Atmos Chem Phys ; 18(24): 18101-18121, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32158471

RESUMEN

The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies; however, few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NO x ). A detailed characterization of SOA at the molecular level was also investigated. Experiments were conducted in a 14.5 m3 smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography-mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high-resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical isoprene products but also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were tentatively identified on the basis of high-resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosoxy-OS. The contribution of SOA products from isoprene oxidation to PM2.5 was investigated by analyzing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic-seed experiments and stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic compounds decreased with increasing relative humidity, others varied in an indeterminate manner from changes in the relative humidity.

18.
RSC Adv ; 8(38): 21354-21362, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35539919

RESUMEN

In this work we propose a completely new approach for the synthesis of spirochlorin derivatives based on the use of an imino-keto intermediate formed in situ from 2-amino-5,10,15,20-tetraphenylporphyrins and inverse electron demand Diels-Alder (iEDDA) cycloaddition with 3,6-di-2-pyridyl-1,2,4,5-tetrazine. The mechanism of reaction was analyzed employing theoretical methods by comparing the difference in energy of Frontier Molecular Orbitals (FMO) for appropriate reagents. Ground-state molecular electrostatic (ESP) potential maps were employed as additional tools allowing explanation of the reactivity of substrates. The new class of spirochlorin compounds was fully characterized by means of mass spectrometry, IR, liquid and solid state NMR and X-ray crystallography. Correlation between molecular structure and optical properties for the obtained title compounds is discussed.

19.
Front Microbiol ; 8: 1872, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163375

RESUMEN

Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications.

20.
Chemistry ; 23(62): 15746-15758, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28853184

RESUMEN

Five novel derivatives of pyrene, substituted at positions 1,3,6,8 with 4-(2,2-dimethylpropyloxy)pyridine (P1), 4-decyloxypyridine (P2), 4-pentylpyridine (P3), 1-decyl-1,2,3-triazole (P4), and 1-benzyl-1,2,3-triazole (P5), are obtained through a Suzuki-Miyaura cross-coupling reaction or CuI -catalyzed 1,3-dipolar cycloaddition reaction, respectively, and characterized thoroughly. TGA measurements reveal the high thermal stability of the compounds. Pyrene derivatives P1-P5 all show photoluminescence (PL) quantum yields (Φ) of approximately 75 % in solution. Solid-state photo- and electroluminescence characteristics of selected compounds as organic light-emitting diodes are tested. In the guest-host configuration, two matrixes, that is, poly(N-vinylcarbazole) (PVK) and a binary matrix consisting of PVK and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt %), are applied. The diodes show red, green, or blue electroluminescence, depending on both the compound chemical structure and the actual device architecture. In addition, theoretical studies (DFT and TD-DFT) provide a deeper understanding of the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...