Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 8: e9895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995085

RESUMEN

Rhizoctonia potato disease is widespread in the world and causes substantial yield and quality losses in potato. This study aimed to evaluate the efficacy of entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana in the inhibition of potato Rhizoctonia complex disease. The efficacy of the entomopathogenic fungi M. robertsii and B. bassiana in the defense of potato against Rhizoctonia disease (stem cancer, black scrulf and other forms of manifestation on tubers) was estimated under field conditions in Western Siberia. Preplanting treatment of the tubers with B. bassiana decreased Rhizoctonia disease in the stems and stolons. At the same time, treatment with M. robertsii did not cause a decrease in Rhizoctonia disease in these organs. However, both fungi decreased the sclerotium index on the tubers of new crops. We demonstrated two mechanisms of inhibition of Rhizoctonia solani by M. robertsii and B. bassiana, including (1) direct effect, expressed as inhibition of R. solani sclerotium formation in cocultivation assays, and (2) indirect effect, which is associated with increased peroxidase activity in potato roots under the influence of colonization by entomopathogenic fungi. We suggest that the treatment of seed tubers with B. basiana can effectively manage Rhizoctonia disease during the plant vegetative season and that both fungi significantly improve the quality of the new tuber crop.

2.
Fungal Biol ; 123(12): 927-935, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733735

RESUMEN

Strains of entomopathogenic fungi may have substantial differences in their final stages of mycosis. Insect cadavers are usually overgrown with mycelium after colonization of the insect body, but in many cases, bacterial decomposition of the colonized hosts occurs. We used two Metarhizium robertsii strains in the work: Mak-1 (cadavers become overgrown with mycelium and conidia) and P-72 (cadavers decay after fungal colonization). We conducted a comparative analysis of gut and cadaver microbiota in Colorado potato beetle larvae using 16S rRNA gene sequencing after infection with these strains. In addition, we estimated the content of different forms of nitrogen in cadavers and the influence of cadavers on the growth of Solanum lycopersicum on sand substrates under laboratory conditions. It was shown that infections did not lead to a significant shift in the midgut bacterial communities of infected insects compared to those of untreated insects. Importantly, bacterial communities were similar in both types of cadaver, with predominantly enterobacteria. Decomposing cadavers (P-72) were characterized by increased nitrate and ammonium, and they had a stronger growth-promoting effect on plants compared to cadavers overgrown with mycelium and conidia (Mak-1). We also estimated the colonization and growth of plants after treatment with conidia of both strains cultivated on artificial medium. Both cultures successfully colonized plants, but strain P-72 showed stronger growth promotion than Mak-1. We propose that the use of deviant strains that are unable to sporulate on cadavers leads to a faster (though only passive) flow of nitrogen from killed insects to plants.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Escarabajos/microbiología , Microbiota , Cambios Post Mortem , Amoníaco/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Cadáver , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metarhizium/crecimiento & desarrollo , Nitratos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA