Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794416

RESUMEN

The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.

2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047107

RESUMEN

Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 µM) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+-antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecular-weight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules.


Asunto(s)
Melatonina , Solanum tuberosum , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Complejo de Proteína del Fotosistema II/metabolismo , Solanum tuberosum/metabolismo , Fotosíntesis , Homeostasis , Estrés Salino , Agua/metabolismo
3.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903322

RESUMEN

Heavy metals and aluminum are among the most significant abiotic factors that reduce the productivity and quality of crops in acidic and contaminated soils. The protective effects of brassinosteroids containing lactone are relatively well-studied under heavy metal stress, but the effects of brassinosteroids containing ketone are almost unstudied. Moreover, there are almost no data in the literature on the protective role of these hormones under polymetallic stress. The aim of our study was to compare the stress-protective effects of lactone-containing (homobrassinolide) and ketone-containing (homocastasterone) brassinosteroids on the barley plant's resistance to polymetallic stress. Barley plants were grown under hydroponic conditions; brassinosteroids, increased concentrations of heavy metals (Mn, Ni, Cu, Zn, Cd, and Pb), and Al were added to the nutrient medium. It was found that homocastasterone was more effective than homobrassinolide in mitigating the negative effects of stress on plant growth. Both brassinosteroids had no significant effect on the antioxidant system of plants. Both homobrassinolide and homocastron equally reduced the accumulation of toxic metals (except for Cd) in plant biomass. Both hormones improved Mg nutrition of plants treated with metal stress, but the positive effect on the content of photosynthetic pigments was observed only for homocastasterone and not for homobrassinolide. In conclusion, the protective effect of homocastasterone was more prominent compared to homobrassinolide, but the biological mechanisms of this difference remain to be elucidated.


Asunto(s)
Hordeum , Metales Pesados , Contaminantes del Suelo , Cadmio , Brasinoesteroides/farmacología , Metales Pesados/análisis , Plantas/metabolismo , Hordeum/metabolismo , Hormonas , Contaminantes del Suelo/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA