Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791244

RESUMEN

Cervical artery dissection (CeAD) is the primary cause of ischemic stroke in young adults. Monogenic heritable connective tissue diseases account for fewer than 5% of cases of CeAD. The remaining sporadic cases have known risk factors. The clinical, radiological, and histological characteristics of systemic vasculopathy and undifferentiated connective tissue dysplasia are present in up to 70% of individuals with sporadic CeAD. Genome-wide association studies identified CeAD-associated genetic variants in the non-coding genomic regions that may impact the gene transcription and RNA processing. However, global gene expression profile analysis has not yet been carried out for CeAD patients. We conducted bulk RNA sequencing and differential gene expression analysis to investigate the expression profile of protein-coding genes in the peripheral blood of 19 CeAD patients and 18 healthy volunteers. This was followed by functional annotation, heatmap clustering, reports on gene-disease associations and protein-protein interactions, as well as gene set enrichment analysis. We found potential correlations between CeAD and the dysregulation of genes linked to nucleolar stress, senescence-associated secretory phenotype, mitochondrial malfunction, and epithelial-mesenchymal plasticity.


Asunto(s)
Perfilación de la Expresión Génica , Humanos , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Adulto , Persona de Mediana Edad , Estudio de Asociación del Genoma Completo , Transcriptoma/genética , Disección de la Arteria Vertebral/genética , Estudios de Casos y Controles
2.
Front Genet ; 15: 1344051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404665

RESUMEN

Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of ß-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot¼ in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.

3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139235

RESUMEN

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and ß-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/genética , Proyectos Piloto , MicroARNs/metabolismo , Perfilación de la Expresión Génica
4.
Genes (Basel) ; 13(9)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36140844

RESUMEN

The personalized approach in sports genetics implies considering the allelic variants of genes in polymorphic loci when adjusting the training process of athletes. The personalized approach is used both in sports genetics and in medicine to identify the influence of genotype on the manifestations of human physical qualities that allow to achieve high sports results or to assess the impact of genotype on the development and course of diseases. The impact of genes of the renin-angiotensin and kinin-bradykinin systems in the development of cardiovascular disease in athletes has not been defined. This study aims to determine the polymorphisms of four genes (ACE, BDKRB2, PPARGC1A and NOS3) and the total genetic score to reveal the predisposition to the formation of physical qualities in martial arts athletes with different athletic abilities. The products of these four genes are involved in the control of blood pressure. The allelic variants of these genes are associated with the development of the physical quality "endurance" and have an indirect influence on the formation of speed and power qualities. The total genetic score (TGS: from 0 to 100 arbitrary units) was calculated from the genotype score in each polymorphism. The athletes were divided into Group I with high and Group II with low qualifications depending on their sports success. Single nucleotide polymorphisms (SNPs) are identified through restriction endonucleases cleavage for PCR amplicons for discriminating between alleles of the target genes ACE (rs4646994), BDKRB2 (rs5810761), PPARGC1A (rs8192673) and NOS3 (rs1799983). Significant differences between the allelic variants of target genes and athletic ability were found between Group I and Group II for genotype G/G of NOS3 gene and genotypes Gly/Gly and Gly/Ser of PPARGC1A gene. The data obtained confirm that athletes with unfavourable genotypes are excluded in the screening phase because their endurance is not fully developed to the required level in martial arts. Martial arts athletes with the highest TGS have the highest skill level. Polymorphic loci of four genes whose products are involved in blood pressure control (ACE, BDKRB2, NOS3 and PPARGC1A) can be used in martial arts not only to determine predisposition to cardiovascular disease but also to predispose to the development of speed and power qualities and endurance. The total genetic score can serve as a tool for predicting athletic success.


Asunto(s)
Rendimiento Atlético , Enfermedades Cardiovasculares , Artes Marciales , Angiotensinas , Atletas , Rendimiento Atlético/fisiología , Bradiquinina , Enzimas de Restricción del ADN , Humanos , Polimorfismo de Nucleótido Simple , Renina
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012699

RESUMEN

The diving reflex is an oxygen-saving mechanism which is accompanied by apnea, reflex bradycardia development, peripheral vasoconstriction, spleen erythrocyte release, and selective redistribution of blood flow to the organs most vulnerable to lack of oxygen, such as the brain, heart, and lungs. However, this is a poorly studied form of hypoxia, with a knowledge gap on physiological and biochemical adaptation mechanisms. The reflective sympathetic constriction of the resistive vessels is realized via ADRA1A. It has been shown that ADRA1A SNP (p.Arg347Cys; rs1048101) is associated with changes in tonus in vessel walls. Moreover, the Cys347 allele has been shown to regulate systolic blood pressure. The aim of this work was to evaluate whether the ADRA1A polymorphism affected the pulmonary vascular reactions in men and women in response to the diving reflex. Men (n = 52) and women (n = 50) untrained in diving aged 18 to 25 were recruited into the study. The vascular reactions and blood flow were examined by integrated rheography and rheography of the pulmonary artery. Peripheral blood circulation was registered by plethysmography. The ADRA1A gene polymorphism (p.Arg347Cys; rs1048101) was determined by PCR-RFLP. In both men and women, reflective pulmonary vasodilation did occur in response to the diving reflex, but in women this vasodilation was more pronounced and was accompanied by a higher filling of the lungs with blood.. Additionally, ADRA1A SNP (p.Arg347Cys; rs1048101) is associated with sex. Interestingly, women with the Arg347 allele demonstrated the highest vasodilation of the lung vessels. Therefore, our data may help to indicate women with the most prominent adaptive reactions to the diving reflex. Our data also indicate that women and men with the Cys allele of the ADRA1A gene polymorphism have the highest risk of developing lung hypertension in response to the diving reflex. The diving reflex is an oxygen-saving mechanism which is accompanied by apnea, reflex bradycardia development, peripheral vasoconstriction, spleen erythrocyte release, and selective redistribution of blood flow to the organs most vulnerable to lack of oxygen, such as the brain, heart, and lungs. However, this is a poorly studied form of hypoxia, with a knowledge gap on physiological and biochemical adaptation mechanisms.


Asunto(s)
Reflejo de Inmersión , Receptores Adrenérgicos alfa 1 , Adolescente , Adulto , Apnea/genética , Bradicardia , Femenino , Genotipo , Frecuencia Cardíaca/fisiología , Humanos , Hipoxia/genética , Masculino , Oxígeno , Receptores Adrenérgicos alfa 1/genética , Adulto Joven
6.
Eur J Vasc Endovasc Surg ; 64(6): 595-601, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977695

RESUMEN

OBJECTIVE: Dissection of the carotid artery (CaAD) may result in aneurysm formation. The present study was undertaken to evaluate the time of onset of post-dissection extracranial carotid artery aneurysms (ECAA) following CaAD, and to analyse independent risk factors for the development of these aneurysms. METHODS: From four European stroke centres, 360 patients with extracranial CaAD were included. The time between the estimated dissection onset and aneurysm formation was analysed, and the clinical risk factors increasing the probability of aneurysm were assessed. RESULTS: The median duration of follow up was 5.2 months (range 0 - 24 months). A total of 75 post-dissection ECAAs were identified in 70 patients (19.4%, 95% confidence interval [CI] 15.7 - 23.8). In 52 of 70 (74%) patients, the ECAA was diagnosed at the initial clinical work up of CaAD diagnosis, with the median estimated time of dissection onset to ECAA diagnosis being six days (interquartile range [IQR] 0 - 25). In the remaining 18 (26%) patients who had normal carotid arteries at the initial imaging, the aneurysm diagnosis was made a median of 6.2 months (189 days) from the original imaging (IQR 128 - 198). A Cox proportional hazards model showed that both multiple artery dissections (hazard ratio [HR] 2.58, 95% CI 1.54 - 4.33) and arterial tortuosity (HR 1.79, 95% CI 1.08 - 2.95) were associated with presence of ipsilateral ECAA. CONCLUSION: This post hoc cohort analysis showed substantially delayed development of ipsilateral ECAA in patients with CaAD, months after baseline. Multiple dissections and arterial tortuosity are associated with the presence of ECAA and can be used in future prediction models of ECAA development in patients with CaAD.


Asunto(s)
Aneurisma , Disección Aórtica , Enfermedades de las Arterias Carótidas , Humanos , Dilatación , Enfermedades de las Arterias Carótidas/complicaciones , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/cirugía , Aneurisma/diagnóstico por imagen , Aneurisma/cirugía , Arterias Carótidas , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/cirugía
7.
Genes (Basel) ; 13(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35885959

RESUMEN

Type 2 diabetes (T2D) is a common chronic disease whose etiology is known to have a strong genetic component. Standard genetic approaches, although allowing for the detection of a number of gene variants associated with the disease as well as differentially expressed genes, cannot fully explain the hereditary factor in T2D. The explosive growth in the genomic sequencing technologies over the last decades provided an exceptional impetus for transcriptomic studies and new approaches to gene expression measurement, such as RNA-sequencing (RNA-seq) and single-cell technologies. The transcriptomic analysis has the potential to find new biomarkers to identify risk groups for developing T2D and its microvascular and macrovascular complications, which will significantly affect the strategies for early diagnosis, treatment, and preventing the development of complications. In this article, we focused on transcriptomic studies conducted using expression arrays, RNA-seq, and single-cell sequencing to highlight recent findings related to T2D and challenges associated with transcriptome experiments.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transcriptoma , Biomarcadores , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN , Transcriptoma/genética
8.
Genes (Basel) ; 13(8)2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893047

RESUMEN

Metformin is an oral hypoglycemic agent widely used in clinical practice for treatment of patients with type 2 diabetes mellitus (T2DM). The wide interindividual variability of response to metformin therapy was shown, and recently the impact of several genetic variants was reported. To assess the independent and combined effect of the genetic polymorphism on glycemic response to metformin, we performed an association analysis of the variants in ATM, SLC22A1, SLC47A1, and SLC2A2 genes with metformin response in 299 patients with T2DM. Likewise, the distribution of allele and genotype frequencies of the studied gene variants was analyzed in an extended group of patients with T2DM (n = 464) and a population group (n = 129). According to our results, one variant, rs12208357 in the SLC22A1 gene, had a significant impact on response to metformin in T2DM patients. Carriers of TT genotype and T allele had a lower response to metformin compared to carriers of CC/CT genotypes and C allele (p-value = 0.0246, p-value = 0.0059, respectively). To identify the parameters that had the greatest importance for the prediction of the therapy response to metformin, we next built a set of machine learning models, based on the various combinations of genetic and phenotypic characteristics. The model based on a set of four parameters, including gender, rs12208357 genotype, familial T2DM background, and waist-hip ratio (WHR) showed the highest prediction accuracy for the response to metformin therapy in patients with T2DM (AUC = 0.62 in cross-validation). Further pharmacogenetic studies may aid in the discovery of the fundamental mechanisms of type 2 diabetes, the identification of new drug targets, and finally, it could advance the development of personalized treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Glucemia/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Polimorfismo de Nucleótido Simple
9.
Microorganisms ; 9(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34946220

RESUMEN

Yeasts cope with a wide range of environmental challenges using different adaptive mechanisms. They can prosper at extreme ambient pH and high temperatures; however, their adaptation mechanisms have not been entirely investigated. Previously, we showed the pivotal role and flexibility of the sugar and lipid composition of Yarrowia lipolytica W 29 upon adaptation to unfavorable conditions. In this study, we showed that extreme pH provoked significant changes in the cell wall proteins expression, with an increase in both the chaperones of heat shock protein HSP60 and some other proteins with chaperone functions. The mitochondria activity changes inducing the VDAC and malate dehydrogenase played an essential role in the adaptation, as did the altered carbohydrate metabolism, promoting its shift towards the pyruvate formation rather than gluconeogenesis. The elevated temperature led to changes in the cell wall proteins and chaperones, the induced expression of the proteins involved in the cell structural organization, ribosomal proteins, and the enzymes of formaldehyde degradation. Moreover, the readjustment of the protein composition and amount under combined stress indicated the promotion of catabolic processes related to scavenging the damaged proteins and lipids. Under all of the stress conditions studied, the process of folding, stress resistance, redox adaptation, and oxidative phosphorylation were the dominant pathways. The combined chronic alkaline and heat stress (pH 9.0, 38 °C) led to cross-adaptation, which caused "switching" over the traditional metabolism to the adaptation to the most damaging stress factor, namely the increased temperature.

10.
World J Diabetes ; 12(8): 1200-1219, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34512887

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030. Long-term vascular complications, such as coronary artery disease, myocardial infarction, stroke, are the leading causes of morbidity and mortality among diabetic patients. The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases. To date, the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge. In the future, this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients. This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.

11.
Biomolecules ; 10(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322466

RESUMEN

Cytokinins (CKs) are known to regulate the biogenesis of chloroplasts under changing environmental conditions and at different stages of plant ontogenesis. However, the underlying mechanisms are still poorly understood. Apparently, the mechanisms can be duplicated in several ways, including the influence of nuclear genes that determine the expression of plastome through the two-component CK regulatory circuit. In this study, we evaluated the role of cytokinins and CK signaling pathway on the expression of nuclear genes for plastid RNA polymerase-associated proteins (PAPs). Cytokinin induced the expression of all twelve Arabidopsis thalianaPAP genes irrespective of their functions via canonical CK signaling pathway but this regulation might be indirect taking into consideration their different functions and versatile structure of promoter regions. The disruption of PAP genes contributed to the abolishment of positive CK effect on the accumulation of the chloroplast gene transcripts and transcripts of the nuclear genes for plastid transcription machinery as can be judged from the analysis of pap1 and pap6 mutants. However, the CK regulatory circuit in the mutants remained practically unperturbed. Knock-out of PAP genes resulted in cytokinin overproduction as a consequence of the strong up-regulation of the genes for CK synthesis.


Asunto(s)
Arabidopsis/genética , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes del Cloroplasto , Arabidopsis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , Mutación/genética , Fotosíntesis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Zeatina/farmacología
12.
Front Genet ; 11: 551220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133145

RESUMEN

OBJECTIVES: In March 2020, the World Health Organization declared that an infectious respiratory disease caused by a new severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2, causing coronavirus disease 2019 (COVID-19)] became a pandemic. In our study, we have analyzed a large publicly available dataset, the Genome Aggregation Database (gnomAD), as well as a cohort of 37 Russian patients with COVID-19 to assess the influence of different classes of genetic variants in the angiotensin-converting enzyme-2 (ACE2) gene on the susceptibility to COVID-19 and the severity of disease outcome. RESULTS: We demonstrate that the European populations slightly differ in alternative allele frequencies at the 2,754 variant sites in ACE2 identified in the gnomAD database. We find that the Southern European population has a lower frequency of missense variants and slightly higher frequency of regulatory variants. However, we found no statistical support for the significance of these differences. We also show that the Russian population is similar to other European populations when comparing the frequencies of the ACE2 variants. Evaluation of the effect of various classes of ACE2 variants on COVID-19 outcome in a cohort of Russian patients showed that common missense and regulatory variants do not explain the differences in disease severity. At the same time, we find several rare ACE2 variants (including rs146598386, rs73195521, rs755766792, and others) that are likely to affect the outcome of COVID-19. Our results demonstrate that the spectrum of genetic variants in ACE2 may partially explain the differences in severity of the COVID-19 outcome.

13.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961860

RESUMEN

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease resulting from insulin resistance and progressively reduced insulin secretion, which leads to impaired glucose utilization, dyslipidemia and hyperinsulinemia and progressive pancreatic beta cell dysfunction. The incidence of type 2 diabetes mellitus is increasing worldwide and nowadays T2D already became a global epidemic. The well-known interindividual variability of T2D drug actions such as biguanides, sulfonylureas/meglitinides, DPP-4 inhibitors/GLP1R agonists and SGLT-2 inhibitors may be caused, among other things, by genetic factors. Pharmacogenetic findings may aid in identifying new drug targets and obtaining in-depth knowledge of the causes of disease and its physiological processes, thereby, providing an opportunity to elaborate an algorithm for tailor or precision treatment. The aim of this article is to summarize recent progress and discoveries for T2D pharmacogenetics and to discuss the factors which limit the furthering accumulation of genetic variability knowledge in patient response to therapy that will allow improvement the personalized treatment of T2D.


Asunto(s)
Benzamidas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Metformina/uso terapéutico , Farmacogenética , Compuestos de Sulfonilurea/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Hipoglucemiantes/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
14.
BMC Evol Biol ; 19(Suppl 1): 48, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813886

RESUMEN

BACKGROUND: Maternally inherited Wolbachia symbionts infect D. melanogaster populations worldwide. Infection rates vary greatly. Genetic diversity of Wolbachia in D. melanogaster can be subdivided into several closely related genotypes coinherited with certain mtDNA lineages. mtDNA haplotypes have the following global distribution pattern: mtDNA clade I is mostly found in North America, II and IV in Africa, III in Europe and Africa, V in Eurasia, VI is global but very rare, and VIII is found in Asia. The wMel Wolbachia genotype is predominant in D. melanogaster populations. However, according to the hypothesis of global Wolbachia replacement, the wMelCS genotype was predominant before the XX century when it was replaced by the wMel genotype. Here we analyse over 1500 fly isolates from the Palearctic region to evaluate the prevalence, genetic diversity and distribution pattrern of the Wolbachia symbiont, occurrence of mtDNA variants, and finally to discuss the Wolbachia genotype global replacement hypothesis. RESULTS: All studied Palearctic populations of D. melanogaster were infected with Wolbachia at a rate of 33-100%. We did not observe any significant correlation between infection rate and longitude or latitude. Five previously reported Wolbachia genotypes were found in Palearctic populations with a predominance of the wMel variant. The mtDNA haplotypes of the I_II_III clade and V clade were prevalent in Palearctic populations. To test the recent Wolbachia genotype replacement hypothesis, we examined three genomic regions of CS-like genotypes. Low genetic diversity was observed, only two haplotypes of the CS genotypes with a 'CCG' variant predominance were found. CONCLUSION: The results of our survey of Wolbachia infection prevalence and genotype diversity in Palearctic D. melanogaster populations confirm previous studies. Wolbachia is ubiquitous in the Palearctic region. The wMel genotype is dominant with local occurrence of rare genotypes. Together with variants of the V mtDNA clade, the variants of the 'III+' clade are dominant in both infected and uninfected flies of Palearctic populations. Based on our data on Wolbachia and mtDNA in different years in some Palearctic localities, we can conclude that flies that survive the winter make the predominant symbiont contribution to the subsequent generation. A comprehensive overview of mtDNA and Wolbachia infection of D. melanogaster populations worldwide does not support the recent global Wolbachia genotype replacement hypothesis. However, we cannot exclude wMelCS genotype rate fluctuations in the past.


Asunto(s)
ADN Mitocondrial/genética , Drosophila melanogaster/microbiología , Variación Genética , Simbiosis , Wolbachia/genética , Wolbachia/fisiología , Animales , Genómica , Geografía , Haplotipos , Mitocondrias/genética , Prevalencia , Wolbachia/citología
15.
J Matern Fetal Neonatal Med ; 32(17): 2790-2796, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29506428

RESUMEN

Background: Preeclampsia (PE) is the most common complication of pregnancy that remains to be a major cause of maternal and fetal mortality. Prediction and early diagnosis of PE would allow for timely initiation of preventive therapy. According to recent studies of ACVR2A gene polymorphism is associated with PE, but it is still unclear whether these findings reflect specific pathogenetic mechanisms of this disease. Methods: We performed targeted next-generation sequencing (NGS) sequencing of ACVR2A gene by means of Ion Torrent Personal Genome machine (PGM) Sequencer. A genetic analysis of patients with PE and control group was performed. Bioinformatics analysis using Polyphen2 (Boston, MA), SIFT (La Jolla, CA), and SnpSift software were used. To select genetic markers in PE patients two additive models and score analysis were applied. Results: Based on the score analysis, we detected two substitutions (rs145399059 and rs17692648) and one insertion insAA at position 148642724 that were associated with PE in our cohorts. We also detected a variant rs17742573 that can be considered as protective against preeclampsia. Conclusions: Our data suggest that some variants in ACVR2A gene are associated with PE. But more studies are required to reveal the role of ACVR2A gene in the pathogenesis of this disease during pregnancy.


Asunto(s)
Receptores de Activinas Tipo II/genética , Preeclampsia/genética , Receptores de Activinas Tipo II/sangre , Adulto , Biomarcadores , Estudios de Casos y Controles , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Preeclampsia/diagnóstico , Embarazo , Resultado del Embarazo
16.
Plant Physiol Biochem ; 129: 90-100, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29852366

RESUMEN

Heat shock is one of the major abiotic factors that causes severe retardation in plant growth and development. To dissect the principal effects of hyperthermia on chloroplast gene expression, we studied the temporal dynamics of transcript accumulation for chloroplast-encoded genes in Arabidopsis thaliana and genes for the chloroplast transcription machinery against a background of changes in physiological parameters. A marked reduction in the transcript amounts of the majority of the genes at the early phases of heat shock (HS) was followed by a return to the baseline levels of rbcL and the housekeeping genes clpP, accD, rps14 and rrn16. The decline in the mRNA levels of trnE (for tRNAglu) and the PSI genes psaA and psaB was opposed by the transient increase in the transcript accumulation of ndhF and the PSII genes psbA, psbD, and psbN and their subsequent reduction with the development of stress. However, the up-regulation of PSII genes in response to elevated temperature was absent in the heat stress-sensitive mutants abi1 and abi2 with the impaired degradation of D2 protein. The expression of rpoA and rpoB, which encode subunits of PEP, was strongly down-regulated throughout the duration of the heat treatment. In addition, heat stress-induced PEP deficiency caused the compensatory up-regulation of the genes for the nuclear-encoded RNA polymerases RPOTp and RPOTmp, the PEP-associated proteins PAP6 and PAP8, the Ser/Thr protein kinase cPCK2, and the stress-inducible sigma factor gene SIG5. Thus, heat stress differentially modulates the transcript accumulation of plastid-encoded genes in A. thaliana at least in part via the expression of HS-responsive nuclear genes for the plastid transcription machinery.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes del Cloroplasto/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Carotenoides/metabolismo , Clorofila/metabolismo , Genes del Cloroplasto/genética , Respuesta al Choque Térmico , Complejo de Proteína del Fotosistema II/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Plant Mol Biol ; 93(4-5): 533-546, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28150126

RESUMEN

KEY MESSAGE: Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histidina Quinasa/genética , Plastidios/genética , Transcripción Genética , Arabidopsis/fisiología , Núcleo Celular/genética , Citocininas/metabolismo , Flores/genética , Flores/fisiología , Genes del Cloroplasto/genética , Mutación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/genética , Plantones/fisiología , Semillas/genética , Semillas/fisiología , Factores de Tiempo
18.
Clin Chim Acta ; 446: 132-40, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25892673

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy is a common genetic cardiac disease. Prevention and early diagnosis of this disease are very important. Because of the large number of causative genes and the high rate of mutations involved in the pathogenesis of this disease, traditional methods of early diagnosis are ineffective. METHODS: We developed a custom AmpliSeq panel for NGS sequencing of the coding sequences of ACTC1, MYBPC3, MYH7, MYL2, MYL3, TNNI3, TNNT2, TPM1, and CASQ2. A genetic analysis of student cohorts (with and without cardiomyopathy risk in their medical histories) and patients with cardiomyopathies was performed. For the statistical and bioinformatics analysis, Polyphen2, SIFT, SnpSift and PLINK software were used. To select genetic markers in the patients with cardiomyopathy and in the students of the high risk group, four additive models were applied. RESULTS: Our AmpliSeq custom panel allowed us to efficiently explore targeted sequences. Based on the score analysis, we detected three substitutions in the MYBPC3 and CASQ2 genes and six combinations between loci in the MYBPC3, MYH7 and CASQ2 genes that were responsible for cardiomyopathy risk in our cohorts. We also detected substitutions in the TNNT2 gene that can be considered as protective against cardiomyopathy. CONCLUSION: We used NGS with AmpliSeq libraries and Ion PGM sequencing to develop improved predictive information for patients at risk of cardiomyopathy.


Asunto(s)
Calsecuestrina/genética , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/diagnóstico , Proteínas Portadoras/genética , Dolor en el Pecho/diagnóstico , Cadenas Pesadas de Miosina/genética , Programas Informáticos , Troponina T/genética , Adolescente , Adulto , Anciano , Calsecuestrina/sangre , Miosinas Cardíacas/sangre , Cardiomiopatía Hipertrófica/sangre , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/sangre , Dolor en el Pecho/sangre , Dolor en el Pecho/genética , Estudios de Cohortes , Diagnóstico Precoz , Femenino , Expresión Génica , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , Cadenas Pesadas de Miosina/sangre , Sistemas de Lectura Abierta , Riesgo , Troponina T/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...