Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(1): e0190421, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29298348

RESUMEN

Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.


Asunto(s)
Biología Computacional , Regulación de la Expresión Génica de las Plantas , Secuencias Reguladoras de Ácidos Nucleicos , Arabidopsis/genética , Ritmo Circadiano , Genes de Plantas , Regiones Promotoras Genéticas
2.
Plant Methods ; 13: 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28053647

RESUMEN

BACKGROUND: The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. RESULTS: We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. CONCLUSIONS: PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

3.
Front Plant Sci ; 7: 1930, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066483

RESUMEN

Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.

4.
Plant Cell Physiol ; 55(9): 1613-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24974385

RESUMEN

Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains depends on the time of day of inoculation. The oxidative burst is stronger when flg22 is infiltrated in the morning in wild-type plants but not in the arrhythmic clock mutant lux arrhythmo/phytoclock1 (pcl1), and thus is controlled by the endogenous clock. Similarly, when bacteria are syringe-infiltrated into the leaf, defense gene induction is higher and bacterial growth is suppressed more strongly after morning inoculation in wild-type but not in pcl1 plants. Furthermore, cell death associated with the hypersensitive response was found to be under clock control. Notably, the clock effect depends on the mode of infection: upon spray inoculation onto the leaf surface, defense gene induction is higher and bacterial growth is suppressed more strongly upon evening inoculation. This different phasing of pre-invasive and post-invasive defense relates to clock-regulated stomatal movement. In particular, TIME FOR COFFEE may impact pathogen defense via clock-regulated stomata movement apart from its known role in time-of-day-dependent jasmonate responses. Taken together, these data highlight the importance of the circadian clock for the control of different immune responses at distinct times of the day.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Flagelina/metabolismo , Mutación , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant Mol Biol ; 85(3): 233-45, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24549883

RESUMEN

The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Cloroplastos/fisiología , Hojas de la Planta/citología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Hierro , Complejo de Proteína del Fotosistema II , Hojas de la Planta/efectos de los fármacos , Piridazinas/farmacología , Nicotiana/citología , Factores de Transcripción/genética , Transcriptoma
6.
J Exp Bot ; 64(18): 5673-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24129704

RESUMEN

Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Familia de Multigenes , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
7.
Plant Signal Behav ; 8(7): e24638, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23656882

RESUMEN

Alternative splicing (AS) gives rise to multiple mRNA isoforms from the same gene, providing possibilities to regulate gene expression beyond the level of transcription. In a recent paper in Nucleic Acids Research we used a high resolution RT-PCR based panel to study changes in AS patterns in plants with altered levels of an hnRNP-like RNA-binding protein in Arabidopsis thaliana. Furthermore, we detected significant changes in AS patterns between different Arabidopsis ecotypes. Here we investigated how small changes in ambient temperature affect AS. We found significant changes in AS for 12 of 28 investigated events (43%) upon transfer of Arabidopsis plants from 20°C to 16°C and for 6 of the 28 investigated events (21%) upon transfer from 20°C to 24°C.


Asunto(s)
Empalme Alternativo , Arabidopsis/metabolismo , Temperatura , Arabidopsis/genética , Genes de Plantas , Isoformas de Proteínas/metabolismo
8.
Nucleic Acids Res ; 40(22): 11240-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042250

RESUMEN

Alternative splicing (AS) of pre-mRNAs is an important regulatory mechanism shaping the transcriptome. In plants, only few RNA-binding proteins are known to affect AS. Here, we show that the glycine-rich RNA-binding protein AtGRP7 influences AS in Arabidopsis thaliana. Using a high-resolution RT-PCR-based AS panel, we found significant changes in the ratios of AS isoforms for 59 of 288 analyzed AS events upon ectopic AtGRP7 expression. In particular, AtGRP7 affected the choice of alternative 5' splice sites preferentially. About half of the events are also influenced by the paralog AtGRP8, indicating that AtGRP7 and AtGRP8 share a network of downstream targets. For 10 events, the AS patterns were altered in opposite directions in plants with elevated AtGRP7 level or lacking AtGRP7. Importantly, RNA immunoprecipitation from plant extracts showed that several transcripts are bound by AtGRP7 in vivo and indeed represent direct targets. Furthermore, the effect of AtGRP7 on these AS events was abrogated by mutation of a single arginine that is required for its RNA-binding activity. This indicates that AtGRP7 impacts AS of these transcripts via direct interaction. As several of the AS events are also controlled by other splicing regulators, our data begin to provide insights into an AS network in Arabidopsis.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
9.
Plant Physiol ; 159(4): 1511-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22718775

RESUMEN

TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Tamaño de la Célula/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factores de Transcripción/genética
10.
Plant J ; 56(2): 239-250, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18573194

RESUMEN

The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and independent RNA interference lines with reduced levels of AtGRP7, and the closely related AtGRP8 protein, are also late flowering, particularly in short photoperiods. Consistent with the retention of a photoperiodic response, the transcript encoding the key photoperiodic regulator CONSTANS oscillates with a similar pattern in atgrp7-1 and wild-type plants. In both the RNAi lines and in the atgrp7-1 mutant transcript levels for the floral repressor FLC are elevated. Conversely, in transgenic plants ectopically overexpressing AtGRP7, the transition to flowering is accelerated mainly in short days, with a concomitant reduction in FLC abundance. The late-flowering phenotype of the RNAi lines is suppressed by introducing the flc-3 loss-of-function mutation, suggesting that AtGRP7 promotes floral transition, at least partly by downregulating FLC. Furthermore, vernalization overrides the late-flowering phenotype. Retention of both the photoperiodic response and vernalization response are features of autonomous pathway mutants, suggesting that AtGRP7 is a novel member of the autonomous pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ARN/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , ADN Bacteriano/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutagénesis Insercional , Fotoperiodo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , ARN de Planta/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA