Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosci Microbiota Food Health ; 43(2): 120-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562546

RESUMEN

Lactiplantibacillus plantarum SN13T is a probiotic plant-derived lactic acid bacterium that can grow in various medicinal plant extracts. In this study, we fermented an aqueous extract of gardenia fructus, the fruit of a medicinal plant, with SN13T, such that the bioactivity of the extract was potentiated after fermentation to suppress the release of inflammatory mediators, such as nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), as well as downregulate inflammatory genes in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. This increased antioxidant and anti-inflammatory activity was mediated through bioconversion of the iridoid glycoside geniposide to its aglycone genipin via the supposed hydrolytic action of ß-glucosidases harbored by SN13T. In the complete genome of SN13T, ten putative genes encoding ß-glucosidases of glycosyl hydrolase (GH) family 1 organized among eight gene operons were identified. Transcriptional profiling revealed that two 6-phospho-ß-glucosidase genes, pbg9 and SN13T_1925, located adjacently in the gene operon SN13T_1923, were transcribed significantly more than the remaining genes during fermentation of the gardenia extract. This suggests the role of these ß-glucosidases in bioconversion of geniposide to genipin and the subsequent enhanced bioactivity of the gardenia fructus extract after fermentation with SN13T.

2.
J Biosci Bioeng ; 137(6): 445-452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553372

RESUMEN

Bacteria produce and release small signal molecules, autoinducers, as an indicator of their cell density. The system, called a quorum-sensing (QS) system, is used to control not only virulence factors but also antibiotic production, sporulation, competence, and biofilm formation in bacteria. Different from antibiotics, QS inhibitors are expected to specifically repress the virulence factors in pathogenic bacteria without inhibiting growth or bactericidal effects. Therefore, since QS inhibitors have little risk of antibiotic-resistant bacteria emergence, they have been proposed as promising anti-bacterial agents. In the present study, we aimed to find new QS inhibitors that prohibit the signaling cascade of autoinducer 3 (AI-3) recognized by a QseCB two-component system that regulates some virulence factors of pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica subsp. enterica serovar Typhimurium. We have established the method for QS-inhibitor screening using a newly constructed plasmid pLES-AQSA. E. coli DH5α transformed with the pLES-AQSA can produce ß-galactosidase that converts 5-bromo-4-chloro-3-indolyl ß-d-galactopyranoside (X-gal) into blue pigment (5-bromo-4-chloro-indoxyl) under the control of the QseCB system. By screening, Heyndrickxia coagulans (formerly Bacillus coagulans) 29-2E was found to produce an exopolysaccharide (EPS)-like water-soluble polymer that prohibits QseCB-mediated ß-galactosidase production without antibacterial activities. Further, the simultaneous injection of the 29-2E strain significantly improves the survival rate of Salmonella Typhimurium-infected silkworm larvae (from 0% to 83.3%), suggesting that the substance may be a promising inhibitor against the virulence of pathogens without risk of the emergence of antibiotic-resistant bacteria.


Asunto(s)
Percepción de Quorum , Salmonella typhimurium , Percepción de Quorum/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Virulencia , Bacillus/metabolismo , Antibacterianos/farmacología , Lactonas/farmacología , Lactonas/metabolismo , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Homoserina/análogos & derivados
3.
Biol Pharm Bull ; 46(10): 1451-1460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779047

RESUMEN

Long-term and extensive exposure to UV irradiation can cause sunburn, photoaging, or skin cancer. Various studies have shown that Dendrobium officinale extract has a certain protective effect on skin-related diseases. Lactobacillus plantarum is a probiotic that has been reported to be used for co-fermentation with various plants to enhance the activity of extracts. This article discusses the effectiveness of fermentation of Dendrobium officinale extract with Lactobacillus plantarum GT-17F on protection against UV-mediated photoaging. The study found that fermented extract of Dendrobium officinale (FDO) has a stronger antioxidant effect, especially in free radical scavenging. Pretreatment with FDO enables human skin fibroblast (HSF) cells and reconstruction skin models (EpiSkin and T-Skin) to resist UV-mediated degradation of type I collagen and type III collagen, repair epidermal barrier function, and reduce the damage of barrier-related proteins, such as filaggrin (FLG) and loricrin (LOR). Those findings provide a basis for further studies to evaluate the effectiveness of fermented Dendrobium officinale in preventing UV-mediated damage and photoaging in humans.


Asunto(s)
Dendrobium , Lactobacillus plantarum , Envejecimiento de la Piel , Enfermedades de la Piel , Humanos , Piel
4.
Nutrients ; 15(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37686739

RESUMEN

We previously found that the continuous feeding of ethanol caused mice dysbiosis, in which the cecal microbiota were significantly altered, as compared with those in the non-feeding control group, especially in some bacterial genera involved in gut inflammation. In the present study, we have found that the fermented extract of stevia (Stevia rebaudiana) leaves with plant-derived lactic acid bacteria (LABs), Pediococcus pentosaceus LY45, improves the trimethylamine (TMA) productivity of cecal content, which can be used as an indicator of dysbiosis. The following animal experiment also shows that the LY45-fermented stevia extract represses the typical increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, which decreased from 1106 to 210 IU/L (p < 0.05) and from 591 to 100 IU/L (p < 0.05), respectively, together with the simultaneously latent TMA productivity (from 1356 to 745 µM, p < 0.05) of cecal content in the ethanol-fed mice. The microbiota analyses have shown that the observed increased alterations in pro-inflammatory genera putative SMB53 (family Clostridiaceae) and Dorea are restored by the fermented stevia extract. Our result indicates that the preliminary bioconversion of herbal medicinal precursors by fermentation with safe microorganisms like LABs is expected to be a hopeful method of producing specific metabolites that may contribute to the reconstruction of gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Stevia , Animales , Ratones , Disbiosis , Etanol , Clostridiaceae , Extractos Vegetales/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37278953

RESUMEN

Plant-derived lactic acid bacteria are major fermentation organisms that can grow in medicinal herb extracts enriched with phytochemicals like glycosides, phenolic acids, flavonoids, and tannins. Fermentation with strain-specific Lactobacilli harboring metabolic enzymes can increase the bioactivity and bioavailability of medicinal herbs. Fermentation of extracts of Artemisia princeps and Paeonia lactiflora has been previously found to increase their bioactivities. Therefore, this study explores the possibility of increasing the bioactivity of Mentha arvensis (Mentha) extract against lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells by fermenting with plant-derived probiotic strains Lactobacillus (Lact.) plantarum SN13T and Pediococcus (Ped.) pentosaceus LP28. As a result, fermentation with SN13T significantly increased the bioactivity of Mentha extract as compared to unfermented or LP28-fermented extracts. This higher bioactivity was associated with the metabolism of rosmarinic acid (RA) and caffeic acid (CA), the major bioactive phenolic acids reported in Mentha, along with the production of the metabolite dihydrocaffeic acid (DHCA). DHCA was found to be a more potent LPS-induced nitric oxide (NO) inhibitor than its precursor phenolic acids. The metabolism of RA to DHCA via CA could be mediated by the enzymes cinnamoyl ester hydrolase and hydroxycinnamate reductases, encoded by the ceh gene and the hcrRABC gene operon, respectively, which were identified in the complete genome sequence of Lact. plantarum SN13T but were absent in Ped. pentosaceus LP28. The genes hcrA, hcrB, and hcrC were significantly and time-dependently overexpressed in Lact. plantarum SN13T when grown in the Mentha extract, suggesting the role of phenolic acid metabolism in enhancing its bioactivity.

6.
Biol Pharm Bull ; 46(6): 840-847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258150

RESUMEN

In the present study, we have obtained a temperature-sensitive replication mutant in the Escherichia (E.) coli-lactic acid bacterium (LAB) shuttle vector pLES003-b carrying erythromycin-resistance gene by error-prone PCR technique. Among 858 clones obtained in the construction of the random mutation libraries of pLES003-b in the ori and repA regions, three clones could grow normally at 28 °C but not at 42 °C. One of the clones was designated as pLES003-b TS1. The sequencing analysis of pLES003-b TS1 revealed that the plasmid has four substitution mutations (376G > A, 435A > T, 914C > A, and 1996T > A) and one insertional mutation (1806_1807insA). Among those mutations, substitution mutation 914C > A, which leads to a CGC-to-AGC codon change at position 44 of the RepA protein (arginine-to-serine substitution mutation: R44S in RepA), was predicted to be a cause of temperature sensitivity. Therefore, the C-to-A substitution was introduced into the repA gene in pLES003-b using a site-directed mutagenesis method, and the resultant plasmid was electroporated into a Lactobacillus (L.) plantarum cell. The resultant transformant cannot grow at 42 °C in the presence of erythromycin, which is used as a selective marker, indicating that the R44S point mutation in the RepA protein may be crucial for temperature sensitivity. Furthermore, we have developed a new plasmid as an efficient genetic engineering tool for random insertional mutagenesis in LABs using a combination of transposon Tn10 and the temperature-sensitive replication system in pLES003-b. The resultant plasmid vector, which was designated pLES-Tn10-TS1, would be useful for genetic analysis of the functional molecule in lactic acid bacterial strains.


Asunto(s)
Escherichia coli , Lactobacillales , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura , Replicación del ADN , Vectores Genéticos/genética , Plásmidos/genética , Proteínas/metabolismo , Bacterias/genética , Mutagénesis , Ácido Láctico/metabolismo
7.
Nutrients ; 14(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364756

RESUMEN

Our previous clinical study has shown that the exopolysaccharide (EPS) produced by a plant-derived lactic acid bacterium, Lactobacillus paracasei IJH-SONE68, improves chronic allergy status in humans. In addition, an inhibition of visceral fat accumulation was observed following the intake of EPS during animal experimentation. In the present study, we have further evaluated the health-promoting effects of a spray-dried powder of pineapple juice that is fermented with the IJH-SONE68 strain. This was conducted in a double-blind, randomized, placebo-controlled, parallel-group clinical trial at Hiroshima University from May 2019 to July 2021. Eighty healthy volunteers at range of ages 23-70, with a body mass index between 25 and 29.99, were enrolled. After the 12 weeks of the experimental period were complete, although the average visceral fat area in both groups similarly decreased, there was no significant difference in the content of visceral fat area or in the obesity-related physical parameters in both groups. Further, we found that the serum liver function indices (AST and ALT) in the test group decreased within a statistically determined trend (p = 0.054). The fecal microflora analysis revealed, in the test group, a statistically significant increase in the relative abundance changes within Anaerostipes, which has been reported to help suppress hepatic inflammation.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Hepatopatías , Probióticos , Humanos , Animales , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Método Doble Ciego , Bacterias
8.
Front Microbiol ; 13: 991144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212837

RESUMEN

In the present study, the effect of PLA on a periodontic pathogen, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), the biofilm, and virulence-related genes was investigated. We confirmed that two lactic acid bacteria (LAB) strains isolated from plant sources, Lactiplantibacillus plantarum MSC-C2 and Pediococcus pentosaceus K40, secrete PLA into the de Man, Rogosa & Sharpe (MRS) broth when supplemented with phenyl pyruvic acid (PPA) as a precursor to PLA. Moreover, PLA was generated in the fermentation broths of two medicinal plant extracts, Paeonia lactiflora Pall (PR) and Carthamus tinctorius (CT), when used by each LAB strain and each extract supplemented with PPA. We determined that the minimum inhibitory concentration (MIC) of PLA against A. actinomycetemcomitans was 20 mM. PLA significantly decreased biofilm formation and suppressed the transcription of pgA, ltxA, and cdtB genes, which encode the poly-N-acetylglucosamine (PGA) polysaccharide of biofilm matrix and exotoxins leukotoxin and cytolethal distending toxin (CDT), respectively. The PLA produced by the MSC-C2 and K40 strains was increased several times by the addition of PPA to the MRS broth. The anti-biofilm effect of the extracts from the fermentation broth was proportional to the increasing PLA concentration, while a cumulatively higher effect than that of PLA alone suggested a combinational effect of PLA and the other metabolites, such as lactic acid (LA). Among the two medicinal plants, PLA, produced after the addition of PPA, was higher in PR extract in case of both the LAB strains. PLA production by the MSC-C2 strain in the PR extract reached 4.8 ± 0.23 mM, which was obviously higher than that in the MRS broth (3.88 ± 0.12 mM) supplemented with 1 mg/ml PPA. The activity to inhibit biofilm formation in the fermented PR extract was clearly high. PLA formed in the fermented PR extract downregulated the dispersin B encoding the dspB gene together with pgA, ltxA, and cdtB. In conclusion, this study shows a promising activity of PLA against the A. actinomycetemcomitans biofilm and virulence genes. In addition, the combinational effect of PLA and the medicinal plant extract can be achieved by fermentation with a specific plant-derived LAB strain.

9.
Microorganisms ; 10(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35630406

RESUMEN

Lactic acid bacterial (LAB) fermentation of functional amino acids using fruit juices as a cultivation medium is not well-documented. In the present study, we successfully isolated a high ornithine- and citrulline-producing Lactococcus lactis strain, designated MSC-3G, from sugarcane and investigated the ornithine and citrulline production profile using various fruit juices as a cultivation medium. Among fruit juices, pineapple juice exhibited the highest potentiality to initiate ornithine production (56 mM), while the highest citrulline yield was obtained during lime juice cultivation (34.5 mM). Under the optimal cultivation condition, the highest yield of ornithine and citrulline in pineapple juice reached 98.9 ± 2.2 mM and 211.1 ± 35.7 mM, respectively, both of which were significantly higher than that in the well-known industrial strain of Corynebacterium (C.) glutamicum. Additionally, citrulline production was dependent on oxygen supplementation and increased twofold when grown aerobically. Whole genome sequencing showed that the MSC-3G genome possesses the arginine deiminase (ADI) gene cluster arcABD1C1C2TD2. The results of the ADI pathway enzyme activities of MSC-3G showed a significant increase in arginine deiminase activity, while ornithine carbamoyl transferase activity was decreased, which in turn indicates the high citrulline-accumulation ability of MSC-3G when cultivated in pineapple juice.

10.
Biol Pharm Bull ; 44(12): 1886-1890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853272

RESUMEN

A lactic acid bacterial strain, Lactobacillus plantarum SN35N, which has been isolated from the pear, secretes negatively charged acidic exopolysaccharide (EPS) to outside cells. We have previously found that the SN35N-derived acidic EPS inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35) promoting inflammation. The aim of this study is to find other health benefits of EPS. EPS has been found to exhibit an inhibitory effect against the influenza virus (Alphainfluenzavirus Influenza A virus) and feline calicivirus (Vesivirus Feline calicivirus), which is recognized as a model of norovirus. Although more studies on the structure-function relationship of EPSs are needed, SN35N-derived EPS is a promising lead for developing not only anti-inflammatory agents, but also antiviral substances.


Asunto(s)
Antivirales/farmacología , Lactobacillus plantarum , Polisacáridos Bacterianos/farmacología , Pyrus/microbiología , Animales , Antiinflamatorios/farmacología , Antivirales/aislamiento & purificación , Calicivirus Felino/efectos de los fármacos , Gatos , Perros , Hialuronoglucosaminidasa , Lactobacillales , Lactobacillus plantarum/clasificación , Células de Riñón Canino Madin Darby , Norovirus/efectos de los fármacos , Orthomyxoviridae/efectos de los fármacos , Polisacáridos Bacterianos/aislamiento & purificación , Especificidad de la Especie
11.
Microorganisms ; 9(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34835369

RESUMEN

Inflammatory bowel disease (IBD) is an autoimmune disease characterized by chronic inflammation of the gastrointestinal tract. IBD includes Crohn's disease (CD) and ulcerative colitis (UC). CD can occur in any part of the gastrointestinal tract, whereas UC mainly occurs in the colon and rectum. We previously demonstrated that a novel exopolysaccharide (EPS) produced by a plant-derived bacterium, Lactobacillus paracasei IJH-SONE68, prevents and improves the inflammation in contact dermatitis model mice via oral administration. To evaluate the preventive effect of the EPS against other inflammatory diseases, in the present study, we employed dextran sulfate sodium (DSS)-induced UC model mice. The stool consistency, hematochezia, and colonic atrophy of the mice were improved by the orally administered EPS. We also evaluated the cytokine transcription. Overexpression of the mouse macrophage inflammatory protein 2 mRNA in the colon as a functional homolog of human interleukin-8 was decreased by the orally administered EPS. However, the expression of interleukin-10, which is known as an anti-inflammatory cytokine, was stimulated in the EPS-administrated group. Based on these results, we conclude that the IJH-SONE68-derived EPS is a promising lead material for the development of drugs useful in treating inflammatory diseases such as UC.

12.
Nutrients ; 13(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34836277

RESUMEN

We have recently demonstrated that the exopolysaccharides (EPSs) produced by a plant-derived lactic acid bacterium, Lactobacillus paracasei IJH-SONE68, prevent and ameliorate allergic reaction on contact in dermatitis model mice. In the present study, we conducted a clinical trial using a capsule containing spray-dried powder from pineapple juice broth fermented with the LAB strain as an experimental diet. The clinical trial was conducted as a double-blind and placebo-controlled randomized comparative study from May 2019 to July 2021. Males and females between the ages of 21 and 70 who experience chronic allergies participated in the study. Sixty subjects were instructed to orally take a capsule containing the IJH-SONE68 powder or placebo, every day for 12 weeks. After the clinical trial was over, the scores based on subjects' self-assessment of allergic status were significantly improved in the intervention group, as compared with the placebo group. Some serum biochemicals associated with inflammation response were also significantly improved by intake of the experimental diet. In conclusion, the IJH-SONE68-derived EPS improves chronic allergy status in humans and is expected to decrease their inconvenience.


Asunto(s)
Hipersensibilidad/terapia , Lacticaseibacillus paracasei/fisiología , Probióticos/uso terapéutico , Adulto , Anciano , Antiinflamatorios/farmacología , Método Doble Ciego , Femenino , Alimentos Fermentados , Humanos , Inmunoglobulina E , Masculino , Persona de Mediana Edad , Probióticos/administración & dosificación , Adulto Joven
13.
Antioxidants (Basel) ; 10(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356304

RESUMEN

Fermentation of medicinal herbs can be a significant technique to obtain bioactive compounds. Paeoniae Radix (PR) used in the present study is a well-known herbal medicine that exhibits anti-inflammatory and immunomodulatory activity. The aim of this study is to explore the possibility that a bioactive compound is newly generated in PR extract by fermentation with a plant-derived lactic acid bacteria Lactobacillus brevis 174A. We determined the anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The PR extract fermented with Lactobacillus brevis 174A markedly increased the total phenolic content, decreased intracellular ROS levels, inhibited the release of nitric oxide (NO). It also suppressed inflammatory cytokines IL-6, TNF-ɑ, while simultaneously downregulating the gene expressions of iNOS, IL-6, TNF-ɑ, and IL-1ß compared to the unfermented PR extract. Furthermore, the bioactive compound newly generated from the fermentation was identified as pyrogallol. It inhibits the inflammatory responses in a dose-dependent manner suggesting that fermentation of the herbal extract used as a medium together with the plant-derived lactic acid bacterial strain may be a practical strategy to produce medicines and supplements for healthcare.

14.
Microorganisms ; 9(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199080

RESUMEN

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.

15.
Front Microbiol ; 11: 1159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582099

RESUMEN

Some glycosides, which are detected in water extracts from medicinal plants, have been reported to be degraded into their aglycones by incubating with some microorganisms producing ß-glucosidase. We have shown that a plant-derived Lactobacillus plantarum SN13T harbors 11 open reading frames (ORFs) encoding the ß-glucosidase enzyme and can grow vigorously in several herbal water extracts. In this study, we observed that the water extract from Artemisia princeps Pampanini (AP) fermented with the SN13T strain strongly inhibited the release of interleukin (IL)-8 from the HuH-7 cells, when compared to that without fermentation. Furthermore, we demonstrated that the SN13T strain produced at least two bioactive compounds from some compounds contained in AP extract. In addition, we determined that the two compounds were catechol and seco-tanapartholide C, which dose-dependently inhibited the release of IL-8. Because some sesquiterpene lactones are useful in pharmaceuticals, seco-tanapartholide C may be useful as an anti-inflammatory agent. This study suggests that the fermentation of medicinal herbs with Lb. plantarum SN13T is a significant technique to obtain bioactive compounds having therapeutic potential.

16.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164307

RESUMEN

A clinical study carried out previously by our group has demonstrated that yogurt manufactured with a plant-derived lactic acid bacterium, Lactobacillus plantarum SN13T, significantly reduces the γ-glutamyl transpeptidase (γ-GTP) level as a liver-function parameter. In the present study, we show that with the oral administration of live SN13T cells, alcohol-poisoning symptoms in mice are improved, and the condition does not become fatal. However, prior to the simultaneous administration with ethanol, when the cells were heat-killed or sonicated, the improvement was not observed, and almost all of the mice died. In addition, the dysbiosis of the intestinal microbiota observed in the mice administered with ethanol was restored by simultaneous administration with live SN13T cells. Furthermore, by analyzing the metabolites detected in contents from the mouse cecum, it was demonstrated that the increase in nonvolatile putrefactive amines observed in the ethanol-administration group was reduced by simultaneous administration with live SN13T cells. Judging from these results, the lactic acid bacterial cells capable of reaching the living bowels prevent ethanol-induced poisoning and restore the intestinal microbiota.


Asunto(s)
Alcoholismo/dietoterapia , Disbiosis/dietoterapia , Lactobacillus plantarum/fisiología , Probióticos/administración & dosificación , Administración Oral , Alcoholismo/complicaciones , Aminas/análisis , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Modelos Animales de Enfermedad , Disbiosis/etiología , Heces/química , Heces/microbiología , Microbioma Gastrointestinal , Masculino , Ratones , Probióticos/farmacología , ARN Ribosómico 16S/genética
17.
Biol Pharm Bull ; 42(9): 1581-1589, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474718

RESUMEN

As a bacterium used in industry for production of several amino acids, an endotoxin-free Corynebacterium (C.) glutamicum is well known. However, it is also true that the endotoxin-producing other Corynebacterium species is present. An aim of this study is to obtain a lactic acid bacterium (LAB) that produces ornithine and citrulline at high levels. We successfully isolated a strain, designated K-28, and identified it as Weissella (W.) confusa. The production of ornithine and citrulline by K-28 was 18 ± 1 and 10 ± 2 g/L, respectively, with a 100 ± 9% conversion rate when arginine was continuously fed into a jar fermenter. Although the ornithine high production using C. glutamicum is industrially present, the strains have been genetically modified. In that connection, the wild-type of C. glutamicum produces only 0.5 g/L ornithine, indicating that W. confusa K-28 is superior to C. glutamicum to use a probiotic microorganism. We confirmed that W. confusa K-28 harbors an arginine deiminase (ADI) gene cluster, wkaABDCR. The production of ornithine and the expression of these genes significantly decreased under the aerobic condition rather than anaerobic one. The expression level of the five genes did not differ with or without arginine, suggesting that the production of amino acids in the K-28 strain was not induced by exogenous arginine.


Asunto(s)
Citrulina/biosíntesis , Flores/microbiología , Ornitina/biosíntesis , Senna/microbiología , Weissella/metabolismo , Animales , Citrulina/toxicidad , Masculino , Ornitina/toxicidad , Probióticos , Ratas Sprague-Dawley , Ratas Wistar , Pruebas de Toxicidad Aguda , Weissella/aislamiento & purificación
18.
J Antibiot (Tokyo) ; 72(11): 834-842, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31399643

RESUMEN

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Lactobacillales/efectos de los fármacos , Plantas/microbiología , Probióticos , Estudio de Asociación del Genoma Completo , Humanos , Lactobacillales/genética , Filogenia
19.
J Biochem ; 164(2): 87-92, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726956

RESUMEN

A lactic acid bacterium Lactobacillus paracasei IJH-SONE68, which was isolated from a fig leaf by our group, was found to produce both acidic and neutral exopolysaccharides (EPSs). The nuclear magnetic resonance analysis demonstrates that the former EPS is composed primarily of mannose, and the latter one consists of the α-1, 6-linked glycan chains made of N-acetylglucosamine (GlcNAc). The presence of α-1, 6-linked GlcNAc polysaccharide is first reported in prokaryotes. Furthermore, to reveal the EPS-biosynthetic gene organization in the IJH-SONE68 strain, in the present study, we determined the whole-genome sequence.


Asunto(s)
Ácido Láctico/metabolismo , Lacticaseibacillus paracasei/metabolismo , Polisacáridos/química , Conformación de Carbohidratos , Polisacáridos/biosíntesis
20.
Biol Pharm Bull ; 41(4): 536-545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607926

RESUMEN

Lactobacillus plantarum SN35N, which has been previously isolated from pear, secretes exopolysaccharide (EPS). The aim of the present study is to characterize the EPS chemically and to find the EPS-biosynthesizing gene cluster. The present study demonstrates that the strain produces an acidic EPS carrying phosphate residue, which is composed of glucose, galactose, and mannose at a molecular ratio of 15.0 : 5.7 : 1.0. We also show that acidic EPS strongly inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35), promoting an inflammatory reaction. In the present study, we also determined the complete genome sequence of the SN35N strain, demonstrating that the genome is a circular DNA with 3267626 bp, and the number of predicted coding genes is 3146, with a GC content of 44.51%. In addition, the strain harbors four plasmids, designated pSN35N-1, -2, -3, and -4. Although four EPS-biosynthesizing genes, designated lpe1, lpe2, lpe3, and lpe4, are present in the SN35N chromosomal DNA, another EPS gene cluster, lpe5, is located in the pSN35N-3 plasmid, composed of 35425 bp. EPS low-producing mutants, which were obtained by treating SN35N cells with novobiocin, lost the lpe5 gene cluster in the plasmid-curing experiment, suggesting that the gene cluster for the biosynthesis of acidic EPS is present in the plasmid. The present study shows the chemical characterization of the acidic EPS and its inhibitory effect to the hyaluronidase.


Asunto(s)
Lactobacillus plantarum , Polisacáridos Bacterianos , Animales , Genes Bacterianos , Genoma Bacteriano , Hialuronoglucosaminidasa/antagonistas & inhibidores , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Masculino , Monosacáridos/análisis , Pruebas de Mutagenicidad , Mutación , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/farmacología , Pyrus/microbiología , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...