Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 364: 110054, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872042

RESUMEN

The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.


Asunto(s)
Gluconeogénesis , Floretina , Adenosina Trifosfato/metabolismo , Animales , Glucemia/metabolismo , Glucosa/metabolismo , Hígado , Mitocondrias Hepáticas/metabolismo , Floretina/farmacología , Ratas , Ratas Wistar
2.
Photodiagnosis Photodyn Ther ; 35: 102446, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34289416

RESUMEN

BACKGROUND: The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS: Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS: AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS: Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Adenosina Trifosfato/metabolismo , Animales , Colorantes Azulados , Metabolismo Energético , Hígado , Mitocondrias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Ratas , Ratas Wistar
3.
Plant Signal Behav ; 9(4): e28275, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598311

RESUMEN

Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-DOPA, which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This mini-review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions.


Asunto(s)
Levodopa/metabolismo , Mucuna/metabolismo , Oxidación-Reducción , Feromonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...