Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R896-905, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26984892

RESUMEN

Nitric oxide (NO) plays a role in thermogenesis but does not mediate immune-to-brain febrigenic signaling in rats. There are suggestions of a different situation in birds, but the underlying evidence is not compelling. The present study was designed to clarify this matter in 5-day-old chicks challenged with a low or high dose of bacterial LPS. The lower LPS dose (2 µg/kg im) induced fever at 3-5 h postinjection, whereas 100 µg/kg im decreased core body temperature (Tc) (at 1 h) followed by fever (at 4 or 5 h). Plasma nitrate levels increased 4 h after LPS injection, but they were not correlated with the magnitude of fever. The NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester, l-NAME; 50 mg/kg im) attenuated the fever induced by either dose of LPS and enhanced the magnitude of the Tc reduction induced by the high dose in chicks at 31-32°C. These effects were associated with suppression of metabolic rate, at least in the case of the high LPS dose. Conversely, the effects of l-NAME on Tc disappeared in chicks maintained at 35-36°C, suggesting that febrigenic signaling was essentially unaffected. Accordingly, the LPS-induced rise in the brain level of PGE2 was not affected by l-NAME. Moreover, l-NAME augmented LPS-induced huddling, which is indicative of compensatory mechanisms to run fever in the face of attenuated thermogenesis. Therefore, as in rats, systemic inhibition of NO synthesis attenuates LPS-induced fever in chicks by affecting thermoeffector activity and not by interfering with immune-to-brain signaling. This may constitute a conserved effect of NO in endotherms.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Encéfalo/fisiología , Pollos/fisiología , Fiebre/inducido químicamente , Lipopolisacáridos/toxicidad , Óxido Nítrico/metabolismo , Animales , Conducta Animal , Dinoprostona/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Nitratos/metabolismo , Nitritos/metabolismo , Transducción de Señal/fisiología
2.
J Exp Biol ; 219(Pt 5): 725-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747909

RESUMEN

Baroreflex regulation of blood pressure is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼ 25 °C in spring-summer- and winter-acclimated tegus. In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3 ± 0.82 versus 10.3 ± 0.81 and 11.2 ± 0.65 versus 7.97 ± 0.88 beats min(-1)), while no acclimation differences occurred in resting blood pressure (5.14 ± 0.38 versus 5.06 ± 0.56 kPa), baroreflex gain (94.3 ± 10.7 versus 138.7 ± 30.3% kPa(-1)) or rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH, especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses or rate-pressure product, possibly because of increased stroke volume that may arise because of heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypotension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods.


Asunto(s)
Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Lagartos/fisiología , Aclimatación , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/fisiología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Lagartos/metabolismo , Masculino , Nitroprusiato/farmacología , Fenilefrina/farmacología , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...