Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ DNA ; 6(1): 1-12, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38784600

RESUMEN

The economic and methodological efficiencies of environmental DNA (eDNA) based survey approaches provide an unprecedented opportunity to assess and monitor aquatic environments. However, instances of inadequate communication from the scientific community about confidence levels, knowledge gaps, reliability, and appropriate parameters of eDNA-based methods have hindered their uptake in environmental monitoring programs and, in some cases, has created misperceptions or doubts in the management community. To help remedy this situation, scientists convened a session at the Second National Marine eDNA Workshop to discuss strategies for improving communications with managers. These include articulating the readiness of different eDNA applications, highlighting the strengths and limitations of eDNA tools for various applications or use cases, communicating uncertainties associated with specified uses transparently, and avoiding the exaggeration of exploratory and preliminary findings. Several key messages regarding implementation, limitations, and relationship to existing methods were prioritized. To be inclusive of the diverse managers, practitioners, and researchers, we and the other workshop participants propose the development of communication workflow plans, using RACI (Responsible, Accountable, Consulted, Informed) charts to clarify the roles of all pertinent individuals and parties and to minimize the chance for miscommunications. We also propose developing decision support tools such as Structured Decision-Making (SDM) to help balance the benefits of eDNA sampling with the inherent uncertainty, and developing an eDNA readiness scale to articulate the technological readiness of eDNA approaches for specific applications. These strategies will increase clarity and consistency regarding our understanding of the utility of eDNA-based methods, improve transparency, foster a common vision for confidently applying eDNA approaches, and enhance their benefit to the monitoring and assessment community.

2.
Water (Basel) ; 14(15): 1-24, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36213613

RESUMEN

Indicators based on nutrient-biota relationships in streams can inform water quality restoration and protection programs. Bacterial assemblages could be particularly useful indicators of nutrient effects because they are species-rich, important contributors to ecosystem processes in streams, and responsive to rapidly changing conditions. Here, we sampled 25 streams weekly (12-14 times each) and used 16S rRNA gene metabarcoding of periphyton-associated bacteria to quantify the effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis identified assemblage-level changes and amplicon sequence variants (ASVs) that increased or decreased with increasing TP and TN concentrations (i.e., low P, high P, low N, and high N ASVs). Boosted regression trees confirmed that relative abundances of gene sequence reads for these four indicator groups were associated with nutrient concentrations. Gradient forest analysis complemented these results by using multiple predictors and random forest models for each ASV to identify portions of TP and TN gradients at which the greatest changes in assemblage structure occurred. Synthesized statistical results showed bacterial assemblage structure began changing at 24 µg TP/L with the greatest changes occurring from 110 to 195 µg/L. Changes in the bacterial assemblages associated with TN gradually occurred from 275 to 855 µg/L. Taxonomic and phylogenetic analyses showed that low nutrient ASVs were commonly Firmicutes, Verrucomicrobiota, Flavobacteriales, and Caulobacterales, Pseudomonadales, and Rhodobacterales of Proteobacteria, whereas other groups, such as Chitinophagales of Bacteroidota, and Burkholderiales, Rhizobiales, Sphingomonadales, and Steroidobacterales of Proteobacteria comprised the high nutrient ASVs. Overall, the responses of bacterial ASV indicators in this study highlight the utility of metabarcoding periphyton-associated bacteria for quantifying biotic responses to nutrient inputs in streams.

3.
Mar Pollut Bull ; 182: 113947, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35926436

RESUMEN

Ballast water is a leading pathway for the global introduction of aquatic nonindigenous species. Most international ships are expected to install ballast water management systems (BWMS) by 2024 to treat ballast water before release. This study examines if ballast water discharges managed by BWMS are meeting standards for organisms ≥50 µm in minimum dimension (i.e., <10 organisms per m3; typically zooplankton). Representative samples of ballast water were collected from 29 ships (using 14 different BWMS) arriving to Canada during 2017-2018. Fourteen samples (48 %) had zooplankton concentrations clearly exceeding the standard (ranging from 18 to 3822 organisms per m3). Nonetheless, compared to earlier management strategies, BWMS appear to reduce the frequency of high-risk introduction events. BWMS filter mesh size was an important predictor of zooplankton concentration following treatment. Greater rates of compliance may be achieved as ship crews gain experience with operation and maintenance of BWMS.


Asunto(s)
Navíos , Zooplancton , Animales , Especies Introducidas , Agua , Abastecimiento de Agua
4.
Biology (Basel) ; 11(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35741444

RESUMEN

Intensive agriculture is essential to feed increasing populations, yet requires large amounts of pesticide, fertiliser, and water to maintain productivity. One solution to mitigate these issues is the adoption of Vertical Farming Systems (VFS). The self-contained operation of these facilities offers the potential to recycle agricultural inputs, as well as sheltering crops from the effects of climate change. Recent technological advancements in light-emitting diode (LED) lighting technology have enabled VFS to become a commercial reality, although high electrical consumption continues to tarnish the environmental credentials of the industry. In this review, we examine how the inherent use of electricity by VFS can be leveraged to deliver commercial and environmental benefits. We propose that an understanding of plant photobiology can be used to vary VFS energy consumption in coordination with electrical availability from the grid, facilitating demand-side management of energy supplies and promoting crop yield.

5.
Nanoscale ; 14(20): 7736-7746, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35579413

RESUMEN

Developing new implant surfaces with anti-adhesion bacterial properties used for medical devices remains a challenge. Here we describe a novel study investigating nanotopography influences on bacterial adhesion on surfaces with controlled interspatial nanopillar distances. The surfaces were coated with proteins (fibrinogen, collagen, serum and saliva) prior to E. coli-WT adhesion under flow conditions. PiFM provided chemical mapping and showed that proteins adsorbed both between and onto the nanopillars with a preference for areas between the nanopillars. E. coli-WT adhered least to protein-coated areas with low surface nanopillar coverage, most to surfaces coated with saliva, while human serum led to the lowest adhesion. Protein-coated nanostructured surfaces affected the adhesion of E. coli-WT.


Asunto(s)
Escherichia coli , Nanoestructuras , Bacterias , Adhesión Bacteriana , Humanos , Proteínas de la Membrana , Propiedades de Superficie
6.
Sci Total Environ ; 831: 154960, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35378187

RESUMEN

Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km2 mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.


Asunto(s)
Diatomeas , Ríos , Código de Barras del ADN Taxonómico , ADN Bacteriano , Ecosistema , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
7.
Sci Rep ; 12(1): 1102, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058523

RESUMEN

Brain metastases comprise 40% of all metastatic tumours and breast tumours are among the tumours that most commonly metastasise to the brain, the role that epigenetic gene dysregulation plays in this process is not well understood. We carried out 450 K methylation array analysis to investigate epigenetically dysregulated genes in breast to brain metastases (BBM) compared to normal breast tissues (BN) and primary breast tumours (BP). For this, we referenced 450 K methylation data for BBM tumours prepared in our laboratory with BN and BP from The Cancer Genome Atlas. Experimental validation on our initially identified genes, in an independent cohort of BP and in BBM and their originating primary breast tumours using Combined Bisulphite and Restriction Analysis (CoBRA) and Methylation Specific PCR identified three genes (RP11-713P17.4, MIR124-2, NUS1P3) that are hypermethylated and three genes (MIR3193, CTD-2023M8.1 and MTND6P4) that are hypomethylated in breast to brain metastases. In addition, methylation differences in candidate genes between BBM tumours and originating primary tumours shows dysregulation of DNA methylation occurs either at an early stage of tumour evolution (in the primary tumour) or at a later evolutionary stage (where the epigenetic change is only observed in the brain metastasis). Epigentic changes identified could also be found when analysing tumour free circulating DNA (tfcDNA) in patient's serum taken during BBM biopsies. Epigenetic dysregulation of RP11-713P17.4, MIR3193, MTND6P4 are early events suggesting a potential use for these genes as prognostic markers.


Asunto(s)
Neoplasias Encefálicas/genética , Epigénesis Genética/genética , ARN no Traducido/genética , Biomarcadores de Tumor/genética , Encéfalo/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ADN/genética , Metilación de ADN/genética , Bases de Datos Genéticas , Epigenómica , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs , Metástasis de la Neoplasia/genética , Pronóstico , Regiones Promotoras Genéticas/genética , Receptores de Superficie Celular , Transcriptoma/genética
8.
Arch Orthop Trauma Surg ; 142(11): 3193-3200, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34347124

RESUMEN

INTRODUCTION: As the COVID-19 pandemic was spreading in 2020, the government imposed national lockdowns. We considered the effects these lockdowns had on the paediatric population, with a specific focus on lower limb orthopaedic trauma. We hypothesise that these restrictions will have altered the mechanisms of injury and reduced the number of referrals. MATERIALS AND METHODS: We retrospectively analysed data from 28/08/19 to 01/04/21, considering the variations in referrals and operations during these times, and analysed these data using an online statistical calculator. We examined the rate of referrals, types of fractures referred to the centre, mechanism of injury, volume of operations performed, and average wait times to undergo an operation. The data were compared in pre-lockdown and lockdown times. RESULTS: 67 paediatric patients with lower limb fractures were included in this study. Throughout the lockdown periods, the mean age of children referred was younger (6.9 from 11.1) and they were less likely to be injured as a result of sport (p = 0.0493). They were more likely to fracture their lower leg (p = 0.0016) when compared with other anatomical regions. The average weekly rate of referrals dropped (0.84-0.68), but the rate of operations almost quartered (0.39-0.16). The average wait times for operations dropped significantly, with patients waiting 80% less time from the date of their injury. CONCLUSION: This study highlights the impact of the coronavirus pandemic on the prevalence and management of lower limb paediatric trauma. The demographics and mechanisms of injury which presented to the trust over the pandemic and associated national lockdowns were significantly different. There was a drop in the number of referrals and a preference to non-operative management when patients did present.


Asunto(s)
COVID-19 , Fracturas Óseas , Ortopedia , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Control de Enfermedades Transmisibles , Humanos , Extremidad Inferior/cirugía , Pandemias/prevención & control , Estudios Retrospectivos
9.
Divers Distrib ; 28(9): 1922-1933, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38269301

RESUMEN

Aim: The global shipping fleet, the primary means of transporting goods among countries, also serves as a major dispersal mechanism for marine invasive species. To date, researchers have primarily focussed on the role of ships in transferring marine macrofauna, often overlooking transfers of associated parasites, which can have larger impacts on naïve host individuals and populations. Here, we re-examine three previously published metabarcode datasets targeting zooplankton and protists in ships' ballast water to assess the diversity of parasites across life stages arriving to three major US ports. Location: Port of Hampton Roads in the Chesapeake Bay, Virginia; Ports of Texas City, Houston and Bayport in Galveston Bay, Texas; and Port of Valdez in Prince William Sound, Alaska. Methods: We selected all known parasitic taxa, using sequences generated from the small subunit gene (SSU) from ribosomal RNA (rRNA) amplified from (1) zooplankton collected from plankton tows (35 and 80 µm datasets) and (2) eukaryotes collected from samples of ships' ballast water (3 µm dataset). Results: In all three datasets, we found a broad range of parasitic taxa, including many protistan and metazoan parasites, that infect a wide range of hosts, from teleost fish to dinoflagellates. Parasite richness was highest in the 3 µm dataset and relatively uniform across arrival regions. Several parasite taxa were found in high relative abundance (based on number of sequences recovered) either in ships entering a single or across multiple regions. Main Conclusions: The ubiquity, diversity and relative abundance of parasites detected demonstrate ships are a potent vector for spreading marine parasites across the world's oceans, potentially contributing to reported increases in outbreaks of marine diseases. Future research is urgently needed to evaluate the fate of parasites upon arrival and the efficacy of ballast water treatment systems to reduce future transfers and colonization.

10.
Water Res ; 201: 117377, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34218089

RESUMEN

This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences. Satellite imagery can serve as a cost-effective and consistent monitoring technique for surface cyanobacterial blooms in source waters and can provide drinking water treatment operators information for managing their systems. This study uses satellite imagery from the European Space Agency's Ocean and Land Colour Instrument (OLCI) spanning June 2016 through April 2020. At 300-m spatial resolution, OLCI imagery can be used to monitor cyanobacteria in 685 drinking water sources across 285 lakes in 44 states, referred to here as resolvable drinking water sources. First, a subset of satellite data was compared to a subset of responses (n = 84) submitted as part of the U.S. Environmental Protection Agency's fourth Unregulated Contaminant Monitoring Rule (UCMR 4). These UCMR 4 qualitative responses included visual observations of algal bloom presence and absence near drinking water intakes from March 2018 through November 2019. Overall agreement between satellite imagery and UCMR 4 qualitative responses was 94% with a Kappa coefficient of 0.70. Next, temporal frequency of cyanobacterial blooms at all resolvable drinking water sources was assessed. In 2019, bloom frequency averaged 2% and peaked at 100%, where 100% indicated a bloom was always present at the source waters when satellite imagery was available. Monthly cyanobacterial abundances were used to assess short-term trends across all resolvable drinking water sources and effect size was computed to provide insight on the number of years of data that must be obtained to increase confidence in an observed change. Generally, 2016 through 2020 was an insufficient time period for confidently observing changes at these source waters; on average, a decade of satellite imagery would be required for observed environmental trends to outweigh variability in the data. However, five source waters did demonstrate a sustained short-term trend, with one increasing in cyanobacterial abundance from June 2016 to April 2020 and four decreasing.


Asunto(s)
Cianobacterias , Agua Potable , Monitoreo del Ambiente , Eutrofización , Lagos , Estados Unidos
11.
Mol Ecol ; 30(17): 4321-4337, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162013

RESUMEN

By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.


Asunto(s)
Braquiuros , Parásitos , Thoracica , Animales , Braquiuros/genética , Interacciones Huésped-Parásitos/genética , Transcriptoma
12.
Manag Biol Invasion ; 12(3): 747-775, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35355512

RESUMEN

Invasive species surveillance programs can utilize environmental DNA sampling and analysis to provide information on the presence of invasive species. Wider utilization of eDNA techniques for invasive species surveillance may be warranted. This paper covers topics directed towards invasive species managers and eDNA practitioners working at the intersection of eDNA techniques and invasive species surveillance. It provides background information on the utility of eDNA for invasive species management and points to various examples of its use across federal and international programs. It provides information on 1) why an invasive species manager should consider using eDNA, 2) deciding if eDNA can help with the manager's surveillance needs, 3) important components to operational implementation, and 4) a high-level overview of the technical steps necessary for eDNA analysis. The goal of this paper is to assist invasive species managers in deciding if, when, and how to use eDNA for surveillance. If eDNA use is elected, the paper provides guidance on steps to ensure a clear understanding of the strengths and limitation of the methods and how results can be best utilized in the context of invasive species surveillance.

13.
Ecol Indic ; 128: 1-107822, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35558093

RESUMEN

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown utility for more efficient spatial and temporal monitoring across the United States. Here, satellite imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for each satellite pixel as the percentage of images for that pixel throughout the year exhibiting detectable cyanobacteria. Cyanobacterial frequency was assessed across 2,196 large lakes in 46 states across the continental United States (CONUS) using imagery from the European Space Agency's Ocean and Land Colour Instrument for the years 2017 through 2019. In 2019, across all satellite pixels considered, annual bloom frequency had a median value of 4% and a maximum value of 100%, the latter indicating that for those satellite pixels, a cyanobacterial bloom was detected by the satellite sensor for every satellite image considered. In addition to annual pixel-scale cyanobacterial frequency, results were summarized at the lake- and state-scales by averaging annual pixel-scale results across each lake and state. For 2019, average annual lake-scale frequencies also had a maximum value of 100%, and Oregon and Ohio had the highest average annual state-scale frequencies at 65% and 52%. Pixel-scale frequency results can assist in identifying portions of a lake that are more prone to cyanobacterial blooms, while lake- and state-scale frequency results can assist in the prioritization of sampling resources and mitigation efforts. Satellite imagery is limited by the presence of snow and ice, as imagery collected in these conditions are quality flagged and discarded. Thus, annual bloom frequencies within nine climate regions were investigated to determine whether missing data biased results in climate regions more prone to snow and ice, given that their annual summaries would be weighted toward the summer months when cyanobacterial blooms tend to occur. Results were unbiased by the time period selected in most climate regions, but a large bias was observed for the Northwest Rockies and Plains climate region. Moderate biases were observed for the Ohio Valley and the Southeast climate regions. Finally, a clustering analysis was used to identify areas of high and low cyanobacterial frequency across CONUS based on average annual lake-scale cyanobacterial frequencies for 2019. Several clusters were identified that transcended state, watershed, and eco-regional boundaries. Combined with additional data, results from the clustering analysis may offer insight regarding large-scale drivers of cyanobacterial blooms.

14.
Aquat Ecosyst Health Manag ; 22(4): 440-451, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33364913

RESUMEN

Environmental DNA is one of the most promising new tools in the aquatic biodiversity monitoring toolkit, with particular appeal for applications requiring assessment of target taxa at very low population densities. And yet there persists considerable anxiety within the management community regarding the appropriateness of environmental DNA monitoring for certain tasks and the degree to which environmental DNA methods can deliver information relevant to management needs. This brief perspective piece is an attempt to address that anxiety by offering some advice on how end-users might best approach these new technologies. I do not here review recent developments in environmental DNA science, but rather I explore ways in which managers and decision-makers might become more comfortable adopting environmental DNA tools-or choosing not to adopt them, should circumstances so dictate. I attempt to contextualize the central challenges associated with acceptance of environmental DNA detection by contrasting them with traditional "catch-and-look" approaches to biodiversity monitoring. These considerations lead me to recommend the cultivation of four "virtues," attitudes that can be brought into engagement with environmental DNA surveillance technologies that I hope will increase the likelihood that those engagements will be positive and that the future development and application of environmental DNA tools will further the cause of wise management.

15.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198386

RESUMEN

Bacterial fimbriae are an important virulence factor mediating adhesion to both biotic and abiotic surfaces and facilitating biofilm formation. The expression of type 1 fimbriae of Escherichia coli is a key virulence factor for urinary tract infections and catheter-associated urinary tract infections, which represent the most common nosocomial infections. New strategies to reduce adhesion of bacteria to surfaces is therefore warranted. The aim of the present study was to investigate how surfaces with different nanotopography-influenced fimbriae-mediated adhesion. Surfaces with three different nanopattern surface coverages made in polycarbonate were fabricated by injection molding from electron beam lithography nanopatterned templates. The surfaces were constructed with features of approximately 40 nm width and 25 nm height with 100 nm, 250 nm, and 500 nm interspace distance, respectively. The role of fimbriae type 1-mediated adhesion was investigated using the E. coli wild type BW25113 and ΔfimA (with a knockout of major pilus protein FimA) and ΔfimH (with a knockout of minor protein FimH) mutants. For the surfaces with nanotopography, all strains adhered least to areas with the largest interpillar distance (500 nm). For the E. coli wild type, no difference in adhesion between surfaces without pillars and the largest interpillar distance was observed. For the deletion mutants, increased adhesion was observed for surfaces without pillars compared to surfaces with the largest interpillar distance. The presence of a fully functional type 1 fimbria decreased the bacterial adhesion to the nanopatterned surfaces in comparison to the mutants.

16.
Sci Total Environ ; 749: 141456, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32846346

RESUMEN

Characterizing biodiversity conveyed in ships' ballast water (BW), a global driver of biological invasions, is critically important for understanding risks posed by this key vector and establishing baselines to evaluate changes associated with BW management. Here we employ high throughput sequence (HTS) metabarcoding of the 18S small subunit rRNA to test for and quantify differences in the accumulation of BW-borne biodiversity among three distinct recipient port systems in the United States. These systems were located on three different coasts (Pacific, Gulf, and Atlantic) and chosen to reflect distinct trade patterns and source port biogeography. Extensive sampling of BW tanks (n = 116) allowed detailed exploration of molecular diversity accumulation. Our results indicate that saturation of introduced zooplankton diversity may be achieved quickly, with fewer than 25 tanks needed to achieve 95% of the total extrapolated diversity, if source biogeography is relatively limited. However, as predicted, port systems with much broader source geographies require more extensive sampling to estimate diversity, which continues to accumulate after sampling >100 discharges. The ability to identify BW sources using molecular indicators was also found to depend on the breadth of source biogeography and the extent to which sources had been sampled. These findings have implications both for the effort required to fully understand introduced diversity and for projecting risks associated with future changes to maritime traffic that may increase source biogeography for many recipient ports. Our data also suggest that molecular diversity may not decline significantly with BW age, indicating either that some organisms survive longer than recognized in previous studies or that nucleic acids from dead organisms persist in BW tanks. We present evidence for detection of potentially invasive species in arriving BW but discuss important caveats that preclude strong inferences regarding the presence of living representatives of these species in BW tanks.


Asunto(s)
Biodiversidad , Navíos , Animales , Especies Introducidas , Estados Unidos , Agua/análisis , Zooplancton
17.
Ecol Appl ; 30(8): e02205, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32602216

RESUMEN

Nutrient pollution from human activities remains a common problem facing stream ecosystems. Identifying ecological responses to phosphorus and nitrogen can inform decisions affecting the protection and management of streams and their watersheds. Diatoms are particularly useful because they are a highly diverse group of unicellular algae found in nearly all aquatic environments and are sensitive responders to increased nutrient concentrations. Here, we used DNA metabarcoding of stream diatoms as an approach to quantifying effects of total phosphorus (TP) and total nitrogen (TN). Threshold indicator taxa analysis (TITAN) identified operational taxonomic units (OTUs) that increased or decreased along TP and TN gradients along with nutrient concentrations at which assemblages had substantial changes in the occurrences and relative abundances of OTUs. Boosted regression trees showed that relative abundances of gene sequence reads for OTUs identified by TITAN as low P, high P, low N, or high N diatoms had strong relationships with nutrient concentrations, which provided support for potentially using these groups of diatoms as metrics in monitoring programs. Gradient forest analysis provided complementary information by characterizing multi-taxa assemblage change using multiple predictors and results from random forest models for each OTU. Collectively, these analyses showed that notable changes in diatom assemblage structure and OTUs began around 20 µg TP/L, low P diatoms decreased substantially and community change points occurred from 75 to 150 µg/L, and high P diatoms became increasingly dominant from 150 to 300 µg/L. Diatoms also responded to TN with large decreases in low N diatoms occurring from 280 to 525 µg TN/L and a transition to dominance by high N diatoms from 525-850 µg/L. These diatom responses to TP and TN could be used to inform protection efforts (i.e., anti-degradation) and management goals (i.e., nutrient reduction) in streams and watersheds. Our results add to the growing support for using diatom metabarcoding in monitoring programs.


Asunto(s)
Diatomeas , Ríos , Código de Barras del ADN Taxonómico , Diatomeas/genética , Ecosistema , Monitoreo del Ambiente , Humanos , Nutrientes , Fósforo/análisis
18.
Evol Appl ; 13(3): 545-558, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32431735

RESUMEN

Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white-fingered mud crab (Rhithropanopeus harrisii) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid-Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short-term interaction) than in its native range (long-term interaction), a result that was also supported by a meta-analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host-parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host-parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.

19.
Divers Distrib ; 26(9): 1116-1121, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34121910

RESUMEN

Incidental detection of species of concern (e.g., invasive species, pathogens, threatened and endangered species) during biodiversity assessments based on high-throughput DNA sequencing holds significant risks in the absence of rigorous, fit-for-purpose data quality and reporting standards. Molecular biodiversity data are predominantly collected for ecological studies and thus are generated to common quality assurance standards. However, the detection of certain species of concern in these data would likely elicit interest from end users working in biosecurity or other surveillance contexts (e.g., pathogen detection in health-related fields), for which more stringent quality control standards are essential to ensure that data are suitable for informing decision-making and can withstand legal or political challenges. We suggest here that data quality and reporting criteria are urgently needed to enable clear identification of those studies that may be appropriately applied to surveillance contexts. In the interim, more pointed disclaimers on uncertainties associated with the detection and identification of species of concern may be warranted in published studies. This is not only to ensure the utility of molecular biodiversity data for consumers, but also to protect data generators from uncritical and potentially ill-advised application of their science in decision-making.

20.
Ecol Indic ; 111: 105976, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34326705

RESUMEN

Cyanobacterial harmful algal blooms are the most common form of harmful algal blooms in freshwater systems throughout the world. However, in situ sampling of cyanobacteria in inland lakes is limited both spatially and temporally. Satellite data has proven to be an effective tool to monitor cyanobacteria in freshwater lakes across the United States. This study uses data from the European Space Agency Envisat MEdium Resolution Imaging Spectrometer and the Sentinel-3 Ocean and Land Color Instrument to provide a national overview of the percentage of lakes experiencing a cyanobacterial bloom on a weekly basis for 2008-2011, 2017, and 2018. A total of 2321 lakes across the contiguous United States were included in the analysis. We examined four different thresholds to define when a waterbody is classified as experiencing a bloom. Across these four thresholds, we explored variability in bloom percentage with changes in seasonality and lake size. As a validation of algorithm performance, we analyzed the agreement between satellite observations and previously established ecological patterns, although data availability in the wintertime limited these comparisons on a year-round basis. Changes in cyanobacterial bloom percentage at the national scale followed the well-known temporal pattern of freshwater blooms. The percentage of lakes experiencing a bloom increased throughout the year, reached a maximum in fall, and decreased through the winter. Wintertime data, particularly in northern regions, were consistently limited due to snow and ice cover. With the exception of the Southeast and South, regional patterns mimicked patterns found at the national scale. The Southeast and South exhibited an unexpected pattern as cyanobacterial bloom percentage reached a maximum in the winter rather than the summer. Lake Jesup in Florida was used as a case study to validate this observed pattern against field observations of chlorophyll a. Results from this research establish a baseline of annual occurrence of cyanobacterial blooms in inland lakes across the United States. In addition, methods presented in this study can be tailored to fit the specific requirements of an individual system or region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...