Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 10(31): e0053721, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351220

RESUMEN

We report the complete and circularized genome sequences of two strains of Xanthomonas citri pv. glycines causing bacterial pustule on soybean and one strain of Xanthomonas euvesicatoria pv. alfalfae causing bacterial leaf and stem spot on alfalfa. These assemblies provide high-quality material for functional and evolutionary studies of these legume pathogens.

2.
Microbiol Resour Announc ; 10(31): e0037121, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351221

RESUMEN

We report the complete and circularized genome sequences of 17 strains of Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli, which cause common bacterial blight of bean. These new assemblies combining PacBio and short-read sequencing methods provide high-quality material for studying the evolution of these plant pathogens.

3.
Mol Plant Pathol ; 22(12): 1464-1480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33942466

RESUMEN

BACKGROUND: Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are the causal agents of common bacterial blight of bean (CBB), an important disease worldwide that remains difficult to control. These pathogens belong to distinct species within the Xanthomonas genus and have undergone a dynamic evolutionary history including the horizontal transfer of genes encoding factors probably involved in adaptation to and pathogenicity on common bean. Seed transmission is a key point of the CBB disease cycle, favouring both vertical transmission of the pathogen and worldwide distribution of the disease through global seed trade. TAXONOMY: Kingdom: Bacteria; phylum: Proteobacteria; class: Gammaproteobacteria; order: Lysobacterales (also known as Xanthomonadales); family: Lysobacteraceae (also known as Xanthomonadaceae); genus: Xanthomonas; species: X. citri pv. fuscans and X. phaseoli pv. phaseoli (Xcf-Xpp). HOST RANGE: The main host of Xcf-Xpp is the common bean (Phaseolus vulgaris). Lima bean (Phaseolus lunatus) and members of the Vigna genus (Vigna aconitifolia, Vigna angularis, Vigna mungo, Vigna radiata, and Vigna umbellata) are also natural hosts of Xcf-Xpp. Natural occurrence of Xcf-Xpp has been reported for a handful of other legumes such as Calopogonium sp., Pueraria sp., pea (Pisum sativum), Lablab purpureus, Macroptilium lathyroides, and Strophostyles helvola. There are conflicting reports concerning the natural occurrence of CBB agents on tepary bean (Phaseolus acutifolius) and cowpea (Vigna unguiculata subsp. unguiculata). SYMPTOMS: CBB symptoms occur on all aerial parts of beans, that is, seedlings, leaves, stems, pods, and seeds. Symptoms initially appear as water-soaked spots evolving into necrosis on leaves, pustules on pods, and cankers on twigs. In severe infections, defoliation and wilting may occur. DISTRIBUTION: CBB is distributed worldwide, meaning that it is frequently encountered in most places where bean is cultivated in the Americas, Asia, Africa, and Oceania, except for arid tropical areas. Xcf-Xpp are regulated nonquarantine pathogens in Europe and are listed in the A2 list by the European and Mediterranean Plant Protection Organization (EPPO). GENOME: The genome consists of a single circular chromosome plus one to four extrachromosomal plasmids of various sizes, for a total mean size of 5.27 Mb with 64.7% GC content and an average predicted number of 4,181 coding sequences. DISEASE CONTROL: Management of CBB is based on integrated approaches that comprise measures aimed at avoiding Xcf-Xpp introduction through infected seeds, cultural practices to limit Xcf-Xpp survival between host crops, whenever possible the use of tolerant or resistant bean genotypes, and chemical treatments, mainly restricted to copper compounds. The use of pathogen-free seeds is essential in an effective management strategy and requires appropriate sampling, detection, and identification methods. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPH, https://gd.eppo.int/taxon/XANTFF, and http://www.cost.eu/COST_Actions/ca/CA16107.


Asunto(s)
Phaseolus , Vigna , Enfermedades de las Plantas , Semillas
4.
FEMS Microbiol Ecol ; 96(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32966572

RESUMEN

Seed microbiota acts as a starting point for the assembly of the plant microbiota and contributes to successful plant establishment. To date, the order and timing of microbial taxa immigration during seed development and maturation remained unknown. We investigated the temporal dynamics of seed bacterial communities in bean and radish. A high phylogenetic turnover was observed for both plant species with few taxa associated with all seed developmental stages. Greater heterogeneity in communities structure within each stage was observed for radish. While, about one-third of radish seed bacterial taxa were detected in buds, flowers and fruits, very few taxa seem to be transmitted by the floral route in bean. In the latter species, bacterial populations belonging to the P. fluorescens species complex were found either in buds, flowers and fruits or in seeds. The relative phylogenetic proximity of these bacterial populations combined with their habitat specificity led us to explore the genetic determinants involved in successful seed transmission in bean. Comparative genomic analyses of representatives bacterial strains revealed dozens of coding sequences specifically associated with seed-transmitted strains. This study provided a first glimpse on processes involved in seed microbiota assembly, which could be used for designing plant-beneficial microbial consortia.


Asunto(s)
Microbiota , Semillas , Bacterias/genética , Flores , Filogenia
5.
Phytopathology ; 110(4): 744-757, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31909688

RESUMEN

Zucchini (Cucurbita pepo) is worldwide affected by Pseudomonas syringae, inducing vein clearing, stunting, and necroses during plantlet development. A collection of 58 P. syringae strains isolated from diseased zucchini plantlets was characterized by multilocus sequence analysis (MLSA). A subset of 23 strains responsible for vein clearing of zucchini (VCZ) was evaluated for pathogenicity on zucchini, and their genomes were sequenced. The host range of six VCZ strains was evaluated on 11 cucurbit species. Most VCZ strains belong to clades 2a and 2b-a within phylogroup 2 of P. syringae species complex and are closely related to other strains previously isolated from cucurbits. Genome analyses revealed diversity among VCZ strains within each clade. One main cluster, once referred to by the invalid pathovar name (peponis), gathers VCZ strains presenting a narrow host range including zucchini and squashes. Other VCZ strains present a large host range including zucchini, squashes, cucumber, melons, and in some cases watermelon. The VCZ strain pathogenic features are strongly associated with type III effector repertoires. The presence of avrRpt2 and absence of hopZ5 are associated with a narrow host range, whereas the presence of hopZ5 and absence of avrRpt2 are most generally associated with a large host range. To better detect the different clusters identified with whole genome sequence and pathogenicity analyses, we used a specific-k-mers approach to refine the MLSA scheme. Using this novel MLSA scheme to type P. syringae isolates from diseased cucurbits would give insight into distribution of worldwide strains and origin of epidemics.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas syringae , Tipificación de Secuencias Multilocus , Filogenia , Virulencia
6.
Front Plant Sci ; 10: 489, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057588

RESUMEN

The pathovar viticola of Xanthomonas citri causes bacterial canker of grapevine. This disease was first recorded in India in 1972, and later in Brazil in 1998, where its distribution is currently restricted to the northeastern region. A multilocus sequence analysis (MLSA) based on seven housekeeping genes and a multilocus variable number of tandem repeat analysis (MLVA) with eight loci were performed in order to assess the genetic relatedness among strains from India and Brazil. Strains isolated in India from three related pathovars affecting Vitaceae species and pathogenic strains isolated from Amaranthus sp. found in bacterial canker-infected vineyards in Brazil were also included. MLSA revealed lack of diversity in all seven genes and grouped grapevine and Amaranthus strains in a monophyletic group in X. citri. The VNTR (variable number of tandem repeat) typing scheme conducted on 107 strains detected 101 haplotypes. The total number of alleles per locus ranged from 5 to 12. A minimum spanning tree (MST) showed that Brazilian strains were clearly separated from Indian strains, which showed unique alleles at three loci. The two strains isolated from symptomatic Amaranthus sp. presented unique alleles at two loci. STRUCTURE analyses revealed three groups congruent with MST and a fourth group with strains from India and Brazil. Admixture among populations were observed in all groups. MST, STRUCTURE and e-BURST analyses showed that the strains collected in 1998 belong to two distinct groups, with predicted founder genotypes from two different vineyards in the same region. This suggest that one introduction of grape planting materials contaminated with genetically distinct strains took place, which was followed by pathogen adaptation. Genome sequencing of one Brazilian strain confirmed typical attributes of pathogenic xanthomonads and allowed the design of a complementary VNTR typing scheme dedicated to X. citri pv. viticola that will allow further epidemiological survey of this genetically monomorphic pathovar.

7.
Mol Plant Pathol ; 20(1): 33-50, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076773

RESUMEN

Cases of emergence of novel plant-pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non-pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non-pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild-type, non-pathogenic strains induced a hypersensitive response (HR)-like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non-pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non-pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter-selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.


Asunto(s)
Sistemas de Secreción Tipo III/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Mutagénesis Insercional/genética , Necrosis , Filogenia , Plásmidos/genética , Semillas/microbiología , Nicotiana/microbiología , Xanthomonas/aislamiento & purificación
8.
BMC Genomics ; 19(1): 606, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30103675

RESUMEN

BACKGROUND: Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS: To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS: Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.


Asunto(s)
Transferencia de Gen Horizontal , Interacciones Huésped-Patógeno , Phaseolus/microbiología , Enfermedades de las Plantas/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Genoma Bacteriano , Phaseolus/genética , Phaseolus/crecimiento & desarrollo , Filogenia , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Virulencia , Secuenciación Completa del Genoma , Xanthomonas/clasificación
9.
Annu Rev Phytopathol ; 54: 163-87, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27296145

RESUMEN

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


Asunto(s)
Genoma Bacteriano , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Xanthomonas/fisiología , Xanthomonas/genética
11.
J Exp Bot ; 66(13): 3737-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25922487

RESUMEN

Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.


Asunto(s)
Interacciones Huésped-Patógeno , Medicago truncatula/embriología , Medicago truncatula/microbiología , Semillas/embriología , Semillas/microbiología , Clorofila/metabolismo , Epigénesis Genética , Flores/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Medicago truncatula/genética , Tamaño de los Órganos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción , Semillas/genética , Estrés Fisiológico , Factores de Tiempo , Transcriptoma/genética , Xanthomonas
12.
PLoS One ; 8(11): e79704, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278159

RESUMEN

Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.


Asunto(s)
Xanthomonas axonopodis/genética , Genoma Bacteriano/genética , Repeticiones de Minisatélite/genética , Virulencia/genética , Xanthomonas axonopodis/patogenicidad
13.
BMC Genomics ; 14: 761, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24195767

RESUMEN

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Asunto(s)
Flagelos/genética , Aptitud Genética , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Secuencia de Bases , Evolución Molecular , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Fabaceae/microbiología , Flagelos/fisiología , Genoma Bacteriano , Filogenia , Enfermedades de las Plantas/genética , Semillas/genética , Semillas/microbiología , Análisis de Secuencia de ADN , Xanthomonas/clasificación , Xanthomonas/patogenicidad
14.
PLoS One ; 8(3): e58474, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505513

RESUMEN

Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.


Asunto(s)
Evolución Biológica , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/patogenicidad , Análisis por Conglomerados , Evolución Molecular , Flujo Génico , Genes Bacterianos , Genes Esenciales , Flujo Genético , Tipificación de Secuencias Multilocus , Mutación , Tasa de Mutación , Filogenia , Enfermedades de las Plantas/microbiología , Recombinación Genética , Virulencia/genética , Xanthomonas , Xanthomonas axonopodis/clasificación
15.
New Phytol ; 198(3): 899-915, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23442088

RESUMEN

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Regulación Bacteriana de la Expresión Génica , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Xilanos/metabolismo , Adaptación Fisiológica , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteroides/metabolismo , Brassica/microbiología , Caulobacter crescentus/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Operón , Phaseolus/microbiología , Simbiosis , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/patogenicidad , Xilosa/metabolismo , Xilosidasas/genética , Xilosidasas/metabolismo
16.
BMC Genomics ; 13: 658, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171051

RESUMEN

BACKGROUND: Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS: Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS: This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.


Asunto(s)
Genoma Bacteriano/genética , Saccharum/microbiología , Factores de Virulencia/genética , Xanthomonas/patogenicidad , Xilema/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Adhesinas Bacterianas/genética , Secuencia de Bases , Mapeo Cromosómico , Análisis por Conglomerados , Genes Bacterianos/genética , Immunoblotting , Secuencias Invertidas Repetidas/genética , Modelos Genéticos , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Filogenia , Percepción de Quorum/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Especificidad de la Especie , Xanthomonas/genética
17.
BMC Evol Biol ; 11: 67, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21396107

RESUMEN

BACKGROUND: Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue. RESULTS: We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of Xanthomonas spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes. CONCLUSIONS: These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.


Asunto(s)
Adaptación Fisiológica/genética , Adhesión Bacteriana , Quimiotaxis/genética , Xanthomonas/fisiología , Adhesinas Bacterianas/genética , ADN Bacteriano/genética , Minería de Datos , Genes Bacterianos , Plantas/microbiología , Selección Genética , Alineación de Secuencia , Xanthomonas/genética , Xanthomonas/patogenicidad
18.
Appl Environ Microbiol ; 76(20): 6787-96, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729326

RESUMEN

An understanding of the mechanisms involved in the different steps of bacterial disease epidemiology is essential to develop new control strategies. Seeds are the passive carriers of a diversified microbial cohort likely to affect seedling physiology. Among seed-borne plant-pathogenic bacteria, seed carriage in compatible situations is well evidenced. The aims of our work are to determine the efficiency of pathogen transmission to seeds of a nonhost plant and to evaluate bacterial and plant behaviors at emergence. Bacterial transmission from flowers to seeds and from seeds to seedlings was measured for Xanthomonas campestris pv. campestris in incompatible interactions with bean. Transmissions from seeds to seedlings were compared for X. campestris pv. campestris, for Xanthomonas citri pv. phaseoli var. fuscans in compatible interactions with bean, and for Escherichia coli, a human pathogen, in null interactions with bean. The induction of defense responses was monitored by using reverse transcription and quantitative PCR (RT-qPCR) of genes representing the main signaling pathways and assaying defense-related enzymatic activities. Flower inoculations resulted in a high level of bean seed contamination by X. campestris pv. campestris, which transmitted efficiently to seedlings. Whatever the type of interaction tested, dynamics of bacterial population sizes were similar on seedlings, and no defense responses were induced evidencing bacterial colonization of seedlings without any associated defense response induction. Bacteria associated with the spermosphere multiply in this rich environment, suggesting that the colonization of seedlings relies mostly on commensalism. The transmission of plant-pathogenic bacteria to and by nonhost seeds suggests a probable role of seeds of nonhost plants as an inoculum source.


Asunto(s)
Escherichia coli/aislamiento & purificación , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Semillas/microbiología , Xanthomonas/aislamiento & purificación , Carga Bacteriana , Flores/microbiología , Plantones/microbiología
19.
BMC Genomics ; 10: 616, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20017926

RESUMEN

BACKGROUND: The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. RESULTS: The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. CONCLUSION: The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.


Asunto(s)
Evolución Molecular , Genoma Bacteriano/genética , Xanthomonadaceae/genética , Xanthomonas/genética , Xilema/microbiología , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico/genética , Xanthomonadaceae/clasificación , Xanthomonas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...