Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EXCLI J ; 23: 600-611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887391

RESUMEN

Muscle atrophy due to limb immobilization and inactivity is a common consequence of many diseases and treatment processes. One of the systems activated in inflammatory conditions is the renin-angiotensin system (RAS). The present study was conducted with the aim of investigating the effects of one of the angiotensin-converting enzyme (ACE) inhibitors, enalapril, on improving muscle atrophy caused by immobility. The study was conducted in three groups: a control, an atrophy, and an atrophy group treated with enalapril on Balb/c mice. After tying a splint to cause atrophy in one of the legs, daily treatment with enalapril intraperitoneally (dissolved in DMSO) at a dose of 10 mg/kg/day was done for 7 days. On the eighth day, the splint was opened and half of the mice were evaluated. Then, in the recovery phase, treatment with enalapril was continued in the remaining mice for 10 days without a splint. At the end of each phase, the mice were examined for the muscle strength of the lower limb muscles, and histological and biochemical analyses were subsequently carried out. The tissue level of the oxidative stress index MDA was evaluated, which showed a significantly lower level in the enalapril group compared to the atrophy group (*P<0.1). Also, inflammatory factors in the enalapril group showed a decrease compared to the atrophy group. The strength of four limbs in the mice of the treatment group (-18.36 ± 1.70 %) was significantly higher than that of the atrophy group (-30.33 ± 3 %) at the end of the atrophy phase and also after 10 days of recovery. The results suggest that the use of enalapril that reduces the activation of angiotensin II-dependent pro-oxidant and pro-inflammatory pathways may improve the functional disorder and muscle necrosis in the murine model of muscle atrophy.

2.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544156

RESUMEN

This study aims to develop a microelectrode array-based neural probe that can record dopamine activity with high stability and sensitivity. To mimic the high stability of the gold standard method (carbon fiber electrodes), the microfabricated platinum microelectrode is coated with carbon-based nanomaterials. Carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) and carbon quantum dots (CQDs) were selected for this purpose, while a conductive polymer like poly (3-4-ethylene dioxythiophene) (PEDOT) or polypyrrole (PPy) serves as a stable interface between the platinum of the electrode and the carbon-based nanomaterials through a co-electrodeposition process. Based on our comparison between different conducting polymers and the addition of CQD, the CNT-CQD-PPy modified microelectrode outperforms its counterparts: CNT-CQD-PEDOT, CNT-PPy, CNT-PEDOT, and bare Pt microelectrode. The CNT-CQD-PPy modified microelectrode has a higher conductivity, stability, and sensitivity while achieving a remarkable limit of detection (LOD) of 35.20 ± 0.77 nM. Using fast-scan cyclic voltammetry (FSCV), these modified electrodes successfully measured dopamine's redox peaks while exhibiting consistent and reliable responses over extensive use. This electrode modification not only paves the way for real-time, precise dopamine sensing using microfabricated electrodes but also offers a novel electrochemical sensor for in vivo studies of neural network dynamics and neurological disorders.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37895907

RESUMEN

Skeletal muscle atrophy is associated with poor quality of life and disability. Thus, finding a new strategy for the prevention and treatment of skeletal muscle atrophy is very crucial. This study aimed to investigate the therapeutic potential of hydrogen-rich water (HRW) on muscle atrophy in a unilateral hind limb immobilization model. Thirty-six male Balb/C mice were divided into control (without immobilization), atrophy, and atrophy + hydrogen-rich water (HRW). Unilateral hind limb immobilization was induced using a splint for 7 days (atrophy) and removed for 10 days (recovery). At the end of each phase, gastrocnemius and soleus muscle weight, limb grip strength, skeletal muscle histopathology, muscle fiber size, cross-section area (CSA), serum troponin I and skeletal muscle IL-6, TNF-α and Malondialdehyde (MDA), and mRNA expression of NF-κB, BAX and Beclin-1 were evaluated. Muscle weight and limb grip strength in the H2-treated group were significantly improved during the atrophy phase, and this improvement continued during the recovery period. Treatment by HRW increased CSA and muscle fiber size and reduced muscle fibrosis, serum troponin I, IL-6, TNF-α and MDA which was more prominent in the atrophy phase. These data suggest that HRW could improve muscle atrophy in an immobilized condition and could be considered a new strategy during rehabilitation.

4.
Front Bioeng Biotechnol ; 11: 1097631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761295

RESUMEN

Introduction: Cervical cancer is the leading cause of cancer-related death in women, so novel therapeutic approaches are needed to improve the effectiveness of current therapies or extend their activity. In recent decades, graphene analogs, such as Mxene, an emerging class of two-dimensional (2D) graphene analogs, have been drawing considerable attention based on their intrinsic physicochemical properties and performance as potential candidates for tumor therapy, particularly for therapeutic purposes. Here we explored the targeted drug delivery in cervical cancer in in vivo model. Mxene-based nanocarriers are not able to be precisely controlled in cancer treatment. Method: To solve this problem, the titanium carbide-magnetic core-shell nanocarrier (Ti3C2-Fe3O4@SiO2-FA) is also developed to provide synergetic anticancer with magnetic controlling ability along with pH-responsive drug release. A xenograft model of the cervix was used to investigate the effects of Cisplatin alone, or in combination with Ti3C2@FA and Ti3C2@ Fe3O4@SiO2-FA, on tumor growth following histological staining for evaluation of necrosis. Result and Discussion: A significant tumor-growth suppression effect is shown when the Ti3C2-Fe3O4@SiO2-FA nanocarrier is magnetically controlled Cisplatin drug release. It reveals a synergistic therapeutic efficacy used in conjunction with pharmaceuticals (p < .001). According to the in vivo study, the Ti3C2@FA@Cisplatin nanocomposite exhibits less tumor growth than the drug alone or Ti3C2@FA@Cisplatin via increasing necrosis effect (p < .001). Through this study, Mxene nanosheets are expanded for biomedical applications, not only through the fabrication of biocompatible magnetic Mxene nanocomposite but also through the development of functionalization strategies that enable the magnetic Ti3C2 nanocomposite to load high levels of Cisplatin for cervical cancer treatment (242.5%). Hence, Ti3C2-Fe3O4@SiO2-FA nanocarriers would be promising candidates to improve cancer treatment efficiency.

5.
Mini Rev Med Chem ; 23(9): 1033-1049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35549882

RESUMEN

BACKGROUND: Colorectal cancer is a leading cause of death among cancers worldwide, with the symptoms mimicking other far more common lower gastrointestinal disorders. OBJECTIVE: This challenge in separating colorectal cancer from other diseases has driven researchers to investigate a noninvasive screening technique and effective method. The early detection of colorectal cancer is imperative. Biomarkers play a critical role in colorectal screening tests, treatment, clinical and prognosis management. Therefore, sensitive and rapid biomarker detection would be helpful and demand the early diagnosis of colorectal cancer. METHODS: Recently, several investigations have been performed to design biosensors for early detection of cancer diagnosis and profiling with strong applied ability and high sensitivity. RESULTS: In comparison, optical biosensors are one of the promising platforms for the costeffective and rapid detection of biomarkers. This review will focus on the advancements and progress of the various optical-transducing approaches for diagnosing colorectal cancer. CONCLUSION: Further, the prospects and limitations of these optical biosensors in colorectal cancer diagnosis will be discussed. Here, an overview of optical biosensors and meaningful information for scientists worldwide will be demonstrated.


Asunto(s)
Técnicas Biosensibles , Neoplasias Colorrectales , Humanos , Detección Precoz del Cáncer/métodos , Pronóstico , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Neoplasias Colorrectales/diagnóstico
6.
Front Bioeng Biotechnol ; 10: 984336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091438

RESUMEN

Breast cancer is the second most common cancer worldwide. Prognosis and timely treatment can reduce the illness or improve it. The use of nanomaterials leads to timely diagnosis and effective treatment. MXenes are a 2D material with a unique composition of attributes, containing significant electrical conductance, high optical characteristics, mechanical consistency, and excellent optical properties. Current advances and insights show that MXene is far more promising in biotechnology applications than current nanobiotechnology systems. MXenes have various applications in biotechnology and biomedicine, such as drug delivery/loading, biosensor, cancer treatment, and bioimaging programs due to their high surface area, excellent biocompatibility, and physicochemical properties. Surface modifications MXenes are not only biocompatible but also have multifunctional properties, such as aiming ligands for preferential agglomeration at the tumor sites for photothermal treatment. Studies have shown that these nanostructures, detection, and breast cancer therapy are more acceptable than present nanosystems in in vivo and in vitro. This review article aims to investigate the structure of MXene, its various synthesis methods, its application to cancer diagnosis, cytotoxicity, biodegradability, and cancer treatment by the photothermal process (in-vivo and in-vitro).

7.
Biomater Adv ; 140: 213077, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35952549

RESUMEN

Overall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Excipientes , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Polímeros
8.
Chemosphere ; 307(Pt 1): 135622, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35810872

RESUMEN

It is crucial to fabricate cost-effective and efficient strategies for monitoring and eliminating hazardous metals in the water supplies. Among the many techniques, adsorption is one of the most powerful and facile ways for eliminating pollutants from effluents. It is also crucial to engineering high-performance low-cost adsorbents. In this regard, herein, Fe3O4@SiO2@(BuSO3H)3 as a modified core-shell magnetic silica nanoparticle embodies good selectivity to extract toxic metal ions from aquatic media. The present work investigated the removal performance of the magnetic adsorbent towards Pd2+ cation amongst the other heavy metal ions including Co2+, Pb2+, Hg2+, Cd2+, Cu2+, Zn2+ in aqueous solution. The flame atomic absorption spectrometry (FAAS) was utilized to assess the removal efficiency of the adsorbent. Several experimental parameters including elution condition, initial Pd(II) concentration, adsorbent dosage, initial pH of the solution, and contact time were explored to achieve the optimal conditions. The data of adsorption were very well with the Langmuir isotherm model, according to the adsorption isotherm mechanism experiments. In conclusion, this study lays the way for the development of novel magnetic adsorbents with high removal efficiencies for the removal of toxic metal ions from aqueous environment.


Asunto(s)
Nanopartículas de Magnetita , Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio/análisis , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Mercurio/análisis , Metales Pesados/análisis , Dióxido de Silicio , Contaminantes Químicos del Agua/análisis
9.
J Nanobiotechnology ; 19(1): 399, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844632

RESUMEN

With the growing demands for personalized medicine and medical devices, nanomedicine is a modern scientific field, and research continues to apply nanomaterials for therapeutic and damaged tissue diagnosis. In this regard, substantial progress has been made in synthesizing magnetic nanoparticles with desired sizes, chemical composition, morphologies, and surface chemistry. Among these materials, nanomagnetic iron oxides have demonstrated promise as unique drug delivery carriers due to cancer treatment. This carrier could lead to responsive properties to a specific trigger, including heat, pH, alternative magnetic field, or even enzymes, through functionalization and coating of magnetic nanoparticles, along with biocompatibility, good chemical stability, easy functionalization, simple processing, and ability to localize to the tumor site with the assistance of external magnetic field. Current studies have focused on magnetic nanoparticles' utilities in cancer therapy, especially for colorectal cancer. Additionally, a bibliometric investigation was performed on the public trends in the field of the magnetic nanoparticle to drug delivery and anticancer, which represented progressing applications of these carriers in the multidisciplinary zones with a general view on future research and identified potential opportunities and challenges. Furthermore, we outline the current challenges and forthcoming research perspective for high performance and fostering advanced MNPs in colorectal cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita , Nanomedicina , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Bibliometría , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Ratones , Medicina de Precisión
10.
Heliyon ; 7(4): e06766, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33948508

RESUMEN

In this work, an innovative nanocatalyst (Cu/SiO2-Pr-NH-Benz) was synthesized and applied to coupling and click reaction in an aqueous solution. This work reports an efficient and straightforward approach for synthesizing diverse propargylamine and 1,2,3-triazole derivatives in excellent yield and short-time reaction. Also, a novel method involving the Cu NPs supported on the SiO2 nanocatalyst as a heterogeneous novel catalyst for the "one-pot" three-component A3-coupling of aldehyde, amine, and alkynes and "one-pot" click reaction between alkyne, benzyl halide, and sodium azide in the water at room temperature was developed. Significant advantageous such as enhanced catalytic activity with efficient recycling for the one-pot synthesis of 1,4-disubstituted triazoles and propargyl amine derivatives and in green condition were observed. Also, after five successive reactions, the catalytic activity of recycled Cu/SiO2-Pr-NH-Benz remained high without significant loss in its intrinsic activity.

11.
Heliyon ; 7(2): e06113, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33644441

RESUMEN

An efficient procedure for the synthesis of novel thiazolidinone triazoles through 32 cycloaddition reactions in the presence of copper(I) species was described, and the molecular mechanism of this 32CA was investigated computationally. Different possible pathways for CA process have been studied to achieve this goal, including one-step pathways for both regioisomers 1,4- and 1,5-triazoles (uncatalyzed, mono-copper, di-copper) and also mono- and di-copper stepwise pathways for 1,4-disubstituted triazole. It was exhibited that the most convenient route in terms of energy barriers includes two copper ions. Based on the calculation, the reaction follows a di-copper stepwise mechanism involving the formation of a six-membered ring and then undergoes a ring contraction to a five-membered ring. The regiochemistry of the reaction was investigated based on local and global reactivity indices of reactants, the transition state stabilities calculation. The electron reorganization along the uncatalyzed one-step mechanism has been investigated by the ELF topological analysis of the bonding changes along with the CA reaction.

12.
Curr Org Synth ; 18(7): 624-638, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33593261

RESUMEN

INTRODUCTION: Cysteine is a versatile amino acid for selective chemical modification of proteins with both chemical and biological innovations, which plays a key role in different organic reactions. MATERIALS AND METHODS: Chemical modification of proteins is a rapidly expanding area in chemical biology. Selective installation of biochemical probes has led to a better understanding of natural protein modification and macromolecular function. In other cases, such as chemical alterations, the protein function has entirely changed. This review paper considers the organic reaction of cysteine, the reactivity of this α-amino acid containing sulfur, and several methodologies are also discussed. Herein, we focused on the reaction of cysteine and its application in organic synthesis, which includes addition, condensation, substitution, oxidation, and ring-opening reactions. RESULTS AND DISCUSSION: Hence monitoring of cysteine is pivotal through the preparation of some fluorescent probes to detect cysteine in high sensitivity. Also, a bibliometric analysis was carried out using Web of Science and Scopus databases that demonstrated significant contributions being observed in organic synthesis. Analysis of keywords revealed that research hotspots were cysteine, sensor, unclassified drug, and amino acid. CONCLUSION: Therefore, it seems that future research focuses on using cysteine amino acids in various fields as natural products and organic reactions. This focused review highlights the enduring utility of cysteine in protein modification and sensor preparation, with a special focus on recent innovations in chemistry and biology associated with such modifications.


Asunto(s)
Cisteína , Proteínas , Técnicas de Química Sintética , Cisteína/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo
13.
Heliyon ; 6(9): e04986, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005795

RESUMEN

A new fluorescent chemosensor based on quinoxaline was successfully synthesized through a facile and green catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione in the presence of SBA-Pr-SO3H. Prepared a "switch-off" quinoxaline-based receptor to recognized Hg2+ ion in high selectively and, without any interference from other metal ions, was developed. The photophysical behavior of this fluorophore was studied in acetonitrile by using fluorescence spectra. The fluorescence properties of several cations to acenaphtoquinoxaline were investigated in acetonitrile, and the competition test displayed that the probe fluorescence changes were specific for Hg2+ ion. The obtained results have shown high selectivity and sensitivity only for Hg2+. Also, the detection limit was as low as 42 ppb, and a top linear trend was observed between the concentration of Hg2+ ions and fluorescence intensity. The binding stoichiometry between chemosensor L and Hg2+ was found to be 1:1. Moreover, a computational study was performed to obtain an electronic description of the fluorescence emission and quenching mechanisms. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.

14.
Arch Pharm (Weinheim) ; 353(10): e2000058, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32638438

RESUMEN

In this study, benzyl-1,2,3-triazole-linked 5-benzylidene (thio)barbiturate derivatives 7a-d and 8a-h were designed as potential tyrosinase inhibitors and free-radical scavengers. The twelve derivatives were synthesized via the [3+2] cycloaddition reaction of the corresponding benzyl azide as a dipole and the corresponding alkyne as a dipolarophile in the presence of copper(I) species, generated in situ from copper(II)/ascorbate. The thiobarbiturate derivative 8h and the barbiturate derivative 8b bearing 4-fluoro and 4-bromo groups on the benzyl-triazole moiety were found to be the most potent tyrosinase inhibitors with IC50 values of 24.6 ± 0.9 and 26.8 ± 0.8 µM, respectively. Almost all the compounds showed a good radical scavenging activity with EC50 values in the range of 29.9-324.9 µM. Derivatives 7a, 8f, and 8h were the most potent free-radical scavengers with EC50 values of 29.9 ± 0.8, 36.8 ± 0.9, and 39.2 ± 1.1 µM, respectively. The kinetic analysis revealed that compound 8h was a mixed-type tyrosinase inhibitor. The molecular docking analysis indicated that 8b and 8h were well accommodated in the active site of the tyrosinase enzyme and possessed the most negative binding energy values of -8.55 and -8.81 kcal/mol, respectively. Moreover, it was found that the two residues, Asn81 and Glu322, played a significant role in forming stable enzyme-inhibitor complexes.


Asunto(s)
Barbitúricos/farmacología , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Barbitúricos/química , Inhibidores Enzimáticos/química , Depuradores de Radicales Libres/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología
15.
Front Chem ; 8: 626472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33604329

RESUMEN

The new benzimidazole based receptor Lansoprazole has been used to detect carbonate anion by naked-eye and Uv-Vis spectroscopy. This receptor revealed visual changes with CO 3 2 - anion in ethanol. No detectable color changes were observed upon the addition of any other tested anions. The lansoprazole chemosensor selectively recognizes CO 3 2 - ion over the other interference anions in the ethanol, followed by deprotonation and reflected 1:1 complex formation between the receptor and the carbonate ion. Lansoprazole exhibits splendid selectivity toward carbonate ion via a visible color change from colorless to yellow with a detection limit of 57 µM. The binding mode of CO 3 2 - to receptor L is supported by Density Functional Theory calculation. Moreover, this receptor shows a practical visible colorimetric test strip for the detection of carbonate ions. The transition states calculation demonstrates the occurrence of reaction from L to L- CO 3 2 - after overcoming an energy barrier of 10.1 kcal/mol, and there is considerable interaction energy between L and CO 3 2 - (94.9 kJ/mol), both of which confirmed that receptor L has high sensitivity and selectivity to the carbonate ion. The theoretical studies were performed to acquire an electronic description of the complexation mechanism by CO 3 2 - as well as to study bonding and structure in the complex. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA