Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 32(5): 585-593.e3, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38471506

RESUMEN

Protein misfolding is common to neurodegenerative diseases (NDs) including Alzheimer's disease (AD), which is partly characterized by the self-assembly and accumulation of amyloid-beta in the brain. Lysosomes are a critical component of the proteostasis network required to degrade and recycle material from outside and within the cell and impaired proteostatic mechanisms have been implicated in NDs. We have previously established that toxic amyloid-beta oligomers are endocytosed, accumulate in lysosomes, and disrupt the endo-lysosomal system in neurons. Here, we use pioneering correlative cryo-structured illumination microscopy and cryo-soft X-ray tomography imaging techniques to reconstruct 3D cellular architecture in the native state revealing reduced X-ray density in lysosomes and increased carbon dense vesicles in oligomer treated neurons compared with untreated cells. This work provides unprecedented visual information on the changes to neuronal lysosomes inflicted by amyloid beta oligomers using advanced methods in structural cell biology.


Asunto(s)
Péptidos beta-Amiloides , Lisosomas , Neuronas , Lisosomas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Neuronas/metabolismo , Tomografía por Rayos X/métodos , Animales , Humanos , Microscopía por Crioelectrón/métodos
2.
Proc Natl Acad Sci U S A ; 120(50): e2308933120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064510

RESUMEN

The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.


Asunto(s)
Adenosina Trifosfato , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 60/metabolismo , Chaperonina 10/química , Pliegue de Proteína , Unión Proteica
3.
Microsc Microanal ; 29(Supplement_1): 1182, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613220
4.
Methods Cell Biol ; 177: 327-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37451772

RESUMEN

Cryogenic volumetric imaging using serial plasma focused ion beam scanning electron microscopy (serial pFIB/SEM) is a new and exciting correlative volume electron microscopy (vEM) technique. It enables visualization of un-stained, cryogenically immobilized cells and tissues with ∼20-50nm resolution and a field of view of ∼10-30µm resulting in near-native state imaging and the possibility of microscale, mesoscale and nanoscale correlative imaging. We have written a detailed protocol for optimization of FIB and SEM parameters to reduce imaging artefacts and enable downstream computational processing and analysis. While our experience is based on use of a single system, the protocol has been written to be as hardware and software agnostic as possible, with a focus on the purpose of each step rather than a fully procedural description to provide a useful resource regardless of the system/software in use.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica de Volumen , Microscopía Electrónica de Rastreo , Imagenología Tridimensional/métodos , Programas Informáticos
5.
Histochem Cell Biol ; 160(3): 253-276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37284846

RESUMEN

Public participation in research, also known as citizen science, is being increasingly adopted for the analysis of biological volumetric data. Researchers working in this domain are applying online citizen science as a scalable distributed data analysis approach, with recent research demonstrating that non-experts can productively contribute to tasks such as the segmentation of organelles in volume electron microscopy data. This, alongside the growing challenge to rapidly process the large amounts of biological volumetric data now routinely produced, means there is increasing interest within the research community to apply online citizen science for the analysis of data in this context. Here, we synthesise core methodological principles and practices for applying citizen science for analysis of biological volumetric data. We collate and share the knowledge and experience of multiple research teams who have applied online citizen science for the analysis of volumetric biological data using the Zooniverse platform ( www.zooniverse.org ). We hope this provides inspiration and practical guidance regarding how contributor effort via online citizen science may be usefully applied in this domain.


Asunto(s)
Ciencia Ciudadana , Humanos , Participación de la Comunidad
7.
Nat Commun ; 14(1): 629, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746945

RESUMEN

Structural biology studies inside cells and tissues require methods to thin vitrified specimens to electron transparency. Until now, focused ion beams based on gallium have been used. However, ion implantation, changes to surface chemistry and an inability to access high currents limit gallium application. Here, we show that plasma-coupled ion sources can produce cryogenic lamellae of vitrified human cells in a robust and automated manner, with quality sufficient for pseudo-atomic structure determination. Lamellae were produced in a prototype microscope equipped for long cryogenic run times (> 1 week) and with multi-specimen support fully compatible with modern-day transmission electron microscopes. We demonstrate that plasma ion sources can be used for structural biology within cells, determining a structure in situ to 4.9 Å, and characterise the resolution dependence on particle distance from the lamella edge. We describe a workflow upon which different plasmas can be examined to further streamline lamella fabrication.


Asunto(s)
Electrones , Microscopía , Humanos , Flujo de Trabajo , Carmustina
8.
Elife ; 122023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36805107

RESUMEN

Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of subcellular structures on the mesoscale (10 nm to 10 µm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining, and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM. We evaluated the choice of plasma ion source and imaging regimes to produce high-quality SEM images of a range of different biological samples. Using an automated workflow we produced three-dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20-50 nm. Additionally, a tag-free localisation tool for regions of interest is needed to drive the application of in situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 µm) to produce lamellae for cryogenic electron tomography.


Asunto(s)
Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Humanos , Microscopía Electrónica de Rastreo , Tomografía con Microscopio Electrónico/métodos , Iones , Imagenología Tridimensional/métodos
9.
Biol Imaging ; 3: e10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487693

RESUMEN

Electron cryo-tomography is an imaging technique for probing 3D structures with at the nanometer scale. This technique has been used extensively in the biomedical field to study the complex structures of proteins and other macromolecules. With the advancement in technology, microscopes are currently capable of producing images amounting to terabytes of data per day, posing great challenges for scientists as the speed of processing of the images cannot keep up with the ever-higher throughput of the microscopes. Therefore, automation is an essential and natural pathway on which image processing-from individual micrographs to full tomograms-is developing. In this paper, we present Ot2Rec, an open-source pipelining tool which aims to enable scientists to build their own processing workflows in a flexible and automatic manner. The basic building blocks of Ot2Rec are plugins which follow a unified application programming interface structure, making it simple for scientists to contribute to Ot2Rec by adding features which are not already available. In this paper, we also present three case studies of image processing using Ot2Rec, through which we demonstrate the speedup of using a semi-automatic workflow over a manual one, the possibility of writing and using custom (prototype) plugins, and the flexibility of Ot2Rec which enables the mix-and-match of plugins. We also demonstrate, in the Supplementary Material, a built-in reporting feature in Ot2Rec which aggregates the metadata from all process being run, and output them in the Jupyter Notebook and/or HTML formats for quick review of image processing quality. Ot2Rec can be found at https://github.com/rosalindfranklininstitute/ot2rec.

10.
Biol Imaging ; 3: e9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487692

RESUMEN

An emergent volume electron microscopy technique called cryogenic serial plasma focused ion beam milling scanning electron microscopy (pFIB/SEM) can decipher complex biological structures by building a three-dimensional picture of biological samples at mesoscale resolution. This is achieved by collecting consecutive SEM images after successive rounds of FIB milling that expose a new surface after each milling step. Due to instrumental limitations, some image processing is necessary before 3D visualization and analysis of the data is possible. SEM images are affected by noise, drift, and charging effects, that can make precise 3D reconstruction of biological features difficult. This article presents Okapi-EM, an open-source napari plugin developed to process and analyze cryogenic serial pFIB/SEM images. Okapi-EM enables automated image registration of slices, evaluation of image quality metrics specific to pFIB-SEM imaging, and mitigation of charging artifacts. Implementation of Okapi-EM within the napari framework ensures that the tools are both user- and developer-friendly, through provision of a graphical user interface and access to Python programming.

11.
Faraday Discuss ; 240(0): 18-32, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36172917

RESUMEN

Cryo-electron microscopy (cryoEM) has been transformed over the last decade, with continual new hardware and software tools coming online, pushing the boundaries of what is possible and the nature and complexity of projects that can be undertaken. Here we discuss some recent trends and new tools which are creating opportunities to make more effective use of the resources available within facilities (both staff and equipment). We present approaches for the stratification of projects based on risk and known information about the projects, and the impacts this might have on the allocation of microscope time. We show that allocating different resources (microscope time) based on this information can lead to a significant increase in 'successful' use of the microscope, and reduce lead time by enabling projects to 'fail faster'. This model results in more efficient and sustainable cryoEM facility operation.


Asunto(s)
Programas Informáticos , Humanos , Microscopía por Crioelectrón/métodos
12.
Front Mol Biosci ; 9: 903148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813832

RESUMEN

The specimen preparation process is a key determinant in the success of any cryo electron microscopy (cryoEM) structural study and until recently had remained largely unchanged from the initial designs of Jacques Dubochet and others in the 1980s. The process has transformed structural biology, but it is largely manual and can require extensive optimisation for each protein sample. The chameleon instrument with its self-wicking grids and fast-plunge freezing represents a shift towards a robust, automated, and highly controllable future for specimen preparation. However, these new technologies require new workflows and an understanding of their limitations and strengths. As early adopters of the chameleon technology, we report on our experiences and lessons learned through case studies. We use these to make recommendations for the benefit of future users of the chameleon system and the field of cryoEM specimen preparation generally.

13.
Front Cell Dev Biol ; 10: 842342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433703

RESUMEN

As sample preparation and imaging techniques have expanded and improved to include a variety of options for larger sized and numbers of samples, the bottleneck in volumetric imaging is now data analysis. Annotation and segmentation are both common, yet difficult, data analysis tasks which are required to bring meaning to the volumetric data. The SuRVoS application has been updated and redesigned to provide access to both manual and machine learning-based segmentation and annotation techniques, including support for crowd sourced data. Combining adjacent, similar voxels (supervoxels) provides a mechanism for speeding up segmentation both in the painting of annotation and by training a segmentation model on a small amount of annotation. The support for layers allows multiple datasets to be viewed and annotated together which, for example, enables the use of correlative data (e.g. crowd-sourced annotations or secondary imaging techniques) to guide segmentation. The ability to work with larger data on high-performance servers with GPUs has been added through a client-server architecture and the Pytorch-based image processing and segmentation server is flexible and extensible, and allows the implementation of deep learning-based segmentation modules. The client side has been built around Napari allowing integration of SuRVoS into an ecosystem for open-source image analysis while the server side has been built with cloud computing and extensibility through plugins in mind. Together these improvements to SuRVoS provide a platform for accelerating the annotation and segmentation of volumetric and correlative imaging data across modalities and scales.

14.
J Struct Biol ; 214(1): 107825, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906669

RESUMEN

Ribonucleotide reductase (RNR) is an essential enzyme that converts ribonucleotides to deoxyribonucleotides and is a promising antibiotic target, but few RNRs have been structurally characterized. We present the use of the chameleon, a commercially-available piezoelectric cryogenic electron microscopy plunger, to address complex denaturation in the Neisseria gonorrhoeae class Ia RNR. Here, we characterize the extent of denaturation of the ring-shaped complex following grid preparation using a traditional plunger and using a chameleon with varying dispense-to-plunge times. We also characterize how dispense-to-plunge time influences the amount of protein sample required for grid preparation and preferred orientation of the sample. We demonstrate that the fastest dispense-to-plunge time of 54 ms is sufficient for generation of a data set that produces a high quality structure, and that a traditional plunging technique or slow chameleon dispense-to-plunge times generate data sets limited in resolution by complex denaturation. The 4.3 Å resolution structure of Neisseria gonorrhoeae class Ia RNR in the inactive α4ß4 oligomeric state solved using the chameleon with a fast dispense-to-plunge time yields molecular information regarding similarities and differences to the well studied Escherichia coli class Ia RNR α4ß4 ring.


Asunto(s)
Neisseria gonorrhoeae , Ribonucleótido Reductasas , Escherichia coli/metabolismo , Neisseria gonorrhoeae/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo
16.
Structure ; 28(11): 1238-1248.e4, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32814033

RESUMEN

A host of new technologies are under development to improve the quality and reproducibility of cryoelectron microscopy (cryoEM) grid preparation. Here we have systematically investigated the preparation of three macromolecular complexes using three different vitrification devices (Vitrobot, chameleon, and a time-resolved cryoEM device) on various timescales, including grids made within 6 ms (the fastest reported to date), to interrogate particle behavior at the air-water interface for different timepoints. Results demonstrate that different macromolecular complexes can respond to the thin-film environment formed during cryoEM sample preparation in highly variable ways, shedding light on why cryoEM sample preparation can be difficult to optimize. We demonstrate that reducing time between sample application and vitrification is just one tool to improve cryoEM grid quality, but that it is unlikely to be a generic "silver bullet" for improving the quality of every cryoEM sample preparation.


Asunto(s)
Apoferritinas/ultraestructura , Chaperonina 60/ultraestructura , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Proteínas Mitocondriales/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Aire/análisis , Animales , Biomarcadores/metabolismo , Microscopía por Crioelectrón/instrumentación , Escherichia coli/química , Expresión Génica , Caballos , Humanos , Imagenología Tridimensional/instrumentación , Propiedades de Superficie , Factores de Tiempo , Vitrificación , Agua/química
17.
Commun Biol ; 2: 74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820469

RESUMEN

Super-resolution fluorescence microscopy plays a crucial role in our understanding of cell structure and function by reporting cellular ultrastructure with 20-30 nm resolution. However, this resolution is insufficient to image macro-molecular machinery at work. A path to improve resolution is to image under cryogenic conditions. This substantially increases the brightness of most fluorophores and preserves native ultrastructure much better than chemical fixation. Cryogenic conditions are, however, underutilised because of the lack of compatible high numerical aperture objectives. Here, using a low-cost super-hemispherical solid immersion lens (superSIL) and a basic set-up we achieve 12 nm resolution under cryogenic conditions, to our knowledge the best yet attained in cells using simple set-ups and/or commercial systems. By also allowing multicolour imaging, and by paving the way to total-internal-reflection fluorescence imaging of mammalian cells under cryogenic conditions, superSIL microscopy opens a straightforward route to achieve unmatched resolution on bacterial and mammalian cell samples.


Asunto(s)
Microscopía por Crioelectrón/métodos , Técnicas Citológicas/instrumentación , Técnicas Citológicas/métodos , Microscopía Fluorescente/métodos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Maleimidas/química , Reproducibilidad de los Resultados
18.
Sci Rep ; 8(1): 12017, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104610

RESUMEN

Synchrotron radiation microtomography (SRµCT) is a nominally non-destructive 3D imaging technique which can visualise the internal structures of whole soft tissues. As a multi-stage technique, the cumulative benefits of optimising sample preparation, scanning parameters and signal processing can improve SRµCT imaging efficiency, image quality, accuracy and ultimately, data utility. By evaluating different sample preparations (embedding media, tissue stains), imaging (projection number, propagation distance) and reconstruction (artefact correction, phase retrieval) parameters, a novel methodology (combining reversible iodine stain, wax embedding and inline phase contrast) was optimised for fast (~12 minutes), high-resolution (3.2-4.8 µm diameter capillaries resolved) imaging of the full diameter of a 3.5 mm length of rat spinal cord. White-grey matter macro-features and micro-features such as motoneurons and capillary-level vasculature could then be completely segmented from the imaged volume for analysis through the shallow machine learning SuRVoS Workbench. Imaged spinal cord tissue was preserved for subsequent histology, establishing a complementary SRµCT methodology that can be applied to study spinal cord pathologies or other nervous system tissues such as ganglia, nerves and brain. Further, our 'single-scan iterative downsampling' approach and side-by-side comparisons of mounting options, sample stains and phase contrast parameters should inform efficient, effective future soft tissue SRµCT experiment design.


Asunto(s)
Imagenología Tridimensional/métodos , Médula Espinal/diagnóstico por imagen , Coloración y Etiquetado/métodos , Microtomografía por Rayos X/métodos , Animales , Imagenología Tridimensional/instrumentación , Masculino , Microscopía de Contraste de Fase , Ratas , Sincrotrones , Factores de Tiempo , Adhesión del Tejido/métodos , Microtomografía por Rayos X/instrumentación
19.
Emerg Top Life Sci ; 2(1): 81-92, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33525785

RESUMEN

Cryo-soft X-ray tomography is an imaging technique that addresses the need for mesoscale imaging of cellular ultrastructure of relatively thick samples without the need for staining or chemical modification. It allows the imaging of cellular ultrastructure to a resolution of 25-40 nm and can be used in correlation with other imaging modalities, such as electron tomography and fluorescence microscopy, to further enhance the information content derived from biological samples. An overview of the technique, discussion of sample suitability and information about sample preparation, data collection and data analysis is presented here. Recent developments and future outlook are also discussed.

20.
J Vis Exp ; (126)2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28872144

RESUMEN

Segmentation is the process of isolating specific regions or objects within an imaged volume, so that further study can be undertaken on these areas of interest. When considering the analysis of complex biological systems, the segmentation of three-dimensional image data is a time consuming and labor intensive step. With the increased availability of many imaging modalities and with automated data collection schemes, this poses an increased challenge for the modern experimental biologist to move from data to knowledge. This publication describes the use of SuRVoS Workbench, a program designed to address these issues by providing methods to semi-automatically segment complex biological volumetric data. Three datasets of differing magnification and imaging modalities are presented here, each highlighting different strategies of segmenting with SuRVoS. Phase contrast X-ray tomography (microCT) of the fruiting body of a plant is used to demonstrate segmentation using model training, cryo electron tomography (cryoET) of human platelets is used to demonstrate segmentation using super- and megavoxels, and cryo soft X-ray tomography (cryoSXT) of a mammalian cell line is used to demonstrate the label splitting tools. Strategies and parameters for each datatype are also presented. By blending a selection of semi-automatic processes into a single interactive tool, SuRVoS provides several benefits. Overall time to segment volumetric data is reduced by a factor of five when compared to manual segmentation, a mainstay in many image processing fields. This is a significant savings when full manual segmentation can take weeks of effort. Additionally, subjectivity is addressed through the use of computationally identified boundaries, and splitting complex collections of objects by their calculated properties rather than on a case-by-case basis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...