Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 111: 110764, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279774

RESUMEN

To reconstruct the defects caused by craniectomies autologous, bone grafting was usually used, but they failed most commonly due to bone resorption, infections and donor-site morbidity. In the present investigation, an effort has been made for the first time to check the feasibility and advantage of using hydroxyapatite (HAp) coated e-glass as component of bone implants. Sol-gel synthesized coatings were found to be purely hydroxyapatite from XRD with graded and interconnected pores all over the surface observable in TEM. The interconnected porous nature of ceramics are found to increase bioactivity by acting to up-regulate the process of osseointegration through enhanced nutrient transfer and induction of angiogenesis. From TEM studies and nano indentation studies, we have shown that pores were considered to be appropriate for nutrient supply without compromising the strength of sample while in contact with physiological fluid. After SBF immersion test, porous surface was found to be useful for nucleation of apatite crystals, hence increasing the feasibility and bioactivity of sample. However, our quasi-dynamic study showed less crystallization but had significant formation of apatite layer. Overall, the in vitro analyses show that HAp coated e-glass leads to significant improvement of implant properties in terms of biocompatibility, cell viability and proliferation, osteoinductivity and osteoconductivity. HAp coating of e-glass can potentially be utilized in fabricating durable and strong bioactive non-metallic implants and tissue engineering scaffolds.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Durapatita/química , Vidrio/química , Nanoporos , Ingeniería de Tejidos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Regeneración Ósea/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Propiedades de Superficie
2.
Langmuir ; 33(43): 12120-12129, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28985680

RESUMEN

Fluorescent metal nanoclusters have generated considerable excitement in nanobiotechnology, particularly in the applications of biolabeling, targeted delivery, and biological sensing. The present work is an experimental and computational study that aims to understand the effects of protein environment on the synthesis and electronic properties of gold nanoclusters. MPT63, a drug target of Mycobacterium tuberculosis, was used as the template protein to synthesize, for the first time, gold nanoclusters at a low micromolar concentration of the protein. Two single cysteine mutants of MPT63, namely, MPT63Gly20Cys (mutant I) and MPT63Gly40Cys (mutant II) were employed for this study. The experimental results show that cysteine residues positioned in two different regions of the protein induce varying electronic states of the nanoclusters depending on the surrounding amino acids. A mixture of five-atom and eight-atom clusters was generated for each mutant, and the former was found to be predominant in both cases. Computational studies, including density functional theory (DFT), frontier molecular orbital (FMO), and natural bond orbital (NBO) calculations, validated the experimental observations. The as-prepared protein-stabilized nanoclusters were found to have applications in the imaging of live cells.

3.
Mater Sci Eng C Mater Biol Appl ; 62: 206-14, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26952416

RESUMEN

A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface.


Asunto(s)
Apatitas/química , Cerámica/química , Nanofibras/química , Dióxido de Silicio/química , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Línea Celular , Proliferación Celular/efectos de los fármacos , Implantes Dentales , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Porosidad , Propiedades de Superficie
4.
Sci Rep ; 5: 18503, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26678754

RESUMEN

A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses.

5.
Dalton Trans ; 43(35): 13325-32, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25061004

RESUMEN

A Pd-Ni alloy nanoparticle (NP) doped mesoporous SiO2 film was synthesized using a one pot inorganic-organic sol-gel process in the presence of structure director P123. Pure Pd and Ni NP containing films were also synthesized as controls. Overall a composition of 10 mol% metal (in the case of Pd-Ni, 5 mol% of each metal) and 90 equivalent mol% SiO2 was maintained in the heat-treated films. Grazing incidence X-ray diffraction and transmission electron microscopy studies of the final heat-treated Pd-Ni doped films revealed the (111) oriented growth of the Pd-Ni alloy NPs, with an average size of 5.3 nm, residing inside the mesopores of the SiO2 film. We performed the C-C coupling reaction employing the film-catalysts and the progress of the reaction was monitored using a fluorimeter. Overall, only the Pd-Ni alloy NP doped film showed good catalytic activity with excellent recyclability. It has been determined that the higher oxidising ability of metallic Ni restricted the oxidation of Pd in the Pd-Ni alloy catalyst under the reaction conditions, leading to the maintained reusability in consecutive cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...