Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35257579

RESUMEN

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Asunto(s)
Aminas , Neuralgia , Animales , Encéfalo , Ratones , Neuralgia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas , Médula Espinal
2.
J Psychopharmacol ; 33(1): 25-36, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30484737

RESUMEN

BACKGROUND: A significant proportion of patients suffering from major depression fail to remit following treatment and develop treatment-resistant depression. Developing novel treatments requires animal models with good predictive validity. MRL/lpr mice, an established model of systemic lupus erythematosus, show depression-like behavior. AIMS: We evaluated responses to classical antidepressants, and associated immunological and biochemical changes in MRL/lpr mice. METHODS AND RESULTS: MRL/lpr mice showed increased immobility in the forced swim test, decreased wheel running and sucrose preference when compared with the controls, MRL/MpJ mice. In MRL/lpr mice, acute fluoxetine (30 mg/kg, intraperitoneally (i.p.)), imipramine (10 mg/kg, i.p.) or duloxetine (10 mg/kg, i.p.) did not decrease the immobility time in the Forced Swim Test. Interestingly, acute administration of combinations of olanzapine (0.03 mg/kg, subcutaneously)+fluoxetine (30 mg/kg, i.p.) or bupropion (10 mg/kg, i.p.)+fluoxetine (30 mg/kg, i.p.) retained efficacy. A single dose of ketamine but not three weeks of imipramine (10 mg/kg, i.p.) or escitalopram (5 mg/kg, i.p.) treatment in MRL/lpr mice restored sucrose preference. Further, we evaluated inflammatory, immune-mediated and neuronal mechanisms. In MRL/lpr mice, there was an increase in autoantibodies' titers, [3H]PK11195 binding and immune complex deposition. There was a significant infiltration of the brain by macrophages, neutrophils and T-lymphocytes. p11 mRNA expression was decreased in the prefrontal cortex. Further, there was an increase in the 5-HT2aR expression, plasma corticosterone and indoleamine 2,3-dioxygenase activity. CONCLUSION: In summary, the MRL/lpr mice could be a useful model for Treatment Resistant Depression associated with immune dysfunction with potential to expedite antidepressant drug discovery.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Modelos Animales de Enfermedad , Ketamina/uso terapéutico , Lupus Eritematoso Sistémico/complicaciones , Animales , Corticosterona/sangre , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos MRL lpr , Receptor de Serotonina 5-HT2A/análisis
3.
J Pharmacol Exp Ther ; 358(3): 371-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27411717

RESUMEN

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor-induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


Asunto(s)
Neuralgia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Neuralgia/metabolismo , Neuralgia/fisiopatología , Nocicepción/efectos de los fármacos , Fenotipo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Ratas , Médula Espinal/efectos de los fármacos , Médula Espinal/enzimología , Médula Espinal/fisiopatología
4.
Brain Behav Immun ; 42: 204-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25016199

RESUMEN

Preclinical studies have shown that administration of Bacillus Calmette-Guérin (BCG) vaccine induces depression-like behaviors in mice; however, the effect of antidepressant drug treatment has not been reported earlier. In the present study, we induced depression-like behavior by administering BCG vaccine to BALB/c mice. BCG treatment produced robust serum sickness as shown by a decrease in body weight, reduced spontaneous locomotor activity and reduced voluntary wheel running activity. BCG treatment also elevated plasma IL6 and IFNγ levels and produced a marked activation of lung IDO activity. At a time point when serum sickness-related behaviors had fully recovered (i.e., day 14) BCG-treated mice showed a significant increase in immobility in the forced swim test (FST) and tail suspension test (TST) indicative of a pro-depressant phenotype. We observed significant increase in [(3)H]PK11195 binding in cortex and hippocampus regions of BGC-treated mice in comparison to saline-treated mice indicating prominent neuroinflammation. Pharmacological evaluation of FST behavior in BCG-treated mice demonstrated selective resistance to the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and escitalopram. In contrast the tricyclic antidepressant imipramine, the dual serotonin/norepinephrine reuptake inhibitor (SNRI) duloxetine, and the dual dopamine/norepinephrine reuptake inhibitor (DNRI) nomifensine retained antidepressant efficacy in these mice. The lack of efficacy with acute treatment with SSRIs could not be explained either by differences in drug exposure or serotonin transporter (SERT) occupancy. Our results demonstrate that BCG-vaccine induced depression like behavior is selectively resistant to SSRIs and could potentially be employed to evaluate novel therapeutic agents being developed to treat SSRI-resistance in humans.


Asunto(s)
Vacuna BCG , Citalopram/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/inducido químicamente , Fluoxetina/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citalopram/farmacología , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Fluoxetina/farmacología , Interferón gamma/sangre , Interleucina-6/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Actividad Motora/efectos de los fármacos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...