Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 355: 120524, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461639

RESUMEN

In this study, efficiencies of eight indigenous plants of Baishnabghata Patuli Township (BPT), southeast Kolkata, India, were explored as green barrier species and potentials of plant leaves were exploited for biomonitoring of particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The present work focused on studying PM capturing abilities (539.32-2766.27 µg cm-2) of plants (T. divaricata, N. oleander and B. acuminata being the most efficient species in retaining PM) along with the estimation of foliar contents of PM adhered to leaf surfaces (total sPM (large + coarse): 526.59-2731.76 µg cm-2) and embedded within waxes (total wPM (large + coarse): 8.73-34.51 µg cm-2). SEM imaging used to analyse leaf surfaces affirmed the presence of innate corrugated microstructures as main drivers for particle capture. Accumulation capacities of PAHs of vehicular origin (total index, TI > 4) were compared among the species based on measured concentrations (159.92-393.01 µg g-1) which indicated T. divaricata, P. alba and N. cadamba as highest PAHs accumulators. Specific leaf area (SLA) of plants (71.01-376.79 cm2 g-1), a measure of canopy-atmosphere interface, had great relevance in PAHs diffusion. Relative contribution (>90%) of 4-6 ring PAHs to total carcinogenic equivalent and potential as well as 5-6 ring PAHs to total mutagenic equivalent and potential had also been viewed with respect to benzo[a]pyrene. In-depth analysis of foliar traits and adoption of plant-based ranking strategies (air pollution tolerance index (APTI) and anticipated performance index (API)) provided a rationale for green belting. Each of the naturally selected plant species showed evidences of adaptations during abiotic stress to maximize survival and filtering effects for reductive elimination of ambient PM and PAHs, allowing holistic management of green spaces.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo Biológico , Contaminación del Aire/análisis , Monitoreo del Ambiente
2.
J Environ Manage ; 344: 118569, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453299

RESUMEN

Electronegative Fluorine has great reactivity and it exists as organic or inorganic fluoride compounds. Biosorption feasibility of fluoride onto alginate-cellulose composites was investigated in this study. Extracted cellulose has been utilized to synthesize calcium alginate impregnated composite beads for fluoride remediation process in batch and fluidized-bed reactors. Physiochemical characteristics were analyzed by FTIR, SEM, TGA and BET. From the BET properties analysis, the surface area of prepared composite beads was 87.13 m2/g. The point zero charge (PZC) value of composite beads was attained at pH 7.32. The relationship between biosorption efficiency and independent variables have been observed to evaluate the effects on the fluoride biosorption efficiency of composites and its components. The hypothetical development of the removal technique has been explained using various nonlinear model-fitting methods to evaluate Isotherm study, bio-sorption Kinetics, Thermodynamic parameters and Mass transfer study. Maximum monolayer adsorption capacity (qm) obtained by following Langmuir model for fluoride removal was found to be 23.809 mg/g at 30 °C using adsorbent dosage of 2 g/L for an initial fluoride concentration of 6 mg/L. The optimized condition for fluoride adsorption experiment was observed by evaluating response surface methodology (RSM) was pH-5.67, dose 1.89 g/L and time 85.71 min and removal was found as 82.79%. Experimental data of fluidized-bed study were evaluated by designing mathematical modeling. Fluidization velocities was adjusted in between Umf and 2Umf for optimizing external mass transfer and adsorbent loss. Regeneration study of fluoride loaded biosorbent and cost analysis of composite production have been estimated.


Asunto(s)
Fluoruros , Contaminantes Químicos del Agua , Fluoruros/química , Alginatos , Concentración de Iones de Hidrógeno , Termodinámica , Adsorción , Cinética , Celulosa , Contaminantes Químicos del Agua/química
4.
Environ Geochem Health ; 45(8): 5761-5781, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36823386

RESUMEN

Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated. Purified extracts, acquired through adsorption chromatography, were subjected to GC-MS and HPLC-UV analyses for qualitative and quantitative assessment of PAHs. Spatio-temporal distribution of accumulated PAHs across the sampling sites was monitored over premonsoon, postmonsoon and winter supported by pollutant source characterization. The results displayed that the extraction yields of Soxhlet (272.07 ± 26.15 µg g-1) and MASE (280.17 ± 15.46 µg g-1) were the highest among the four techniques. Conditions of extraction with toluene for 6 h were found to be most favorable for PAHs. In spatio-temporal analysis, total concentrations of PAHs in the foliar samples varied from 200.98 ± 2.72 to 550.79 ± 10.11 µg g-1 dry weight, and the highest values being recorded in the samples of Exide More because of daylong inexorable traffic flow/crowding increasing the burden of ambient PAHs. Widespread changes in meteorology exerted influence on seasonal concentrations of PAHs in plant leaves, and extent of leaf contamination by PAHs was observed extreme in winter followed by postmonsoon and then, premonsoon. Foliar accretion of PAHs differed in the study sites with diverse sources of emission from motor vehicles, fossil fuel and biomass burning along with other human interferences.


Asunto(s)
Contaminantes Atmosféricos , Murraya , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo Biológico , Monitoreo del Ambiente/métodos , India , Contaminantes Atmosféricos/análisis
5.
Sci Total Environ ; 851(Pt 1): 158238, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36002093

RESUMEN

In this study, the heavy metal exposure risk model was employed to assess the exposure risk to a predominantly herbivore waterfowl, Northern Pintail, wintering in two wetland habitats in the Purulia district of West Bengal, located on overlapping Central Asian Flyway (CAF) and East Asian-Australasian Flyway (EAAF). Both wetlands were important staging and roosting grounds for migratory waterfowl for ages. The exposure model was used to quantify the risk of exposure to metals through oral ingestion. Exposure doses of Cu, Zn, Pb, and Cr through food plants ingestion and food-associated sediment consumption pathways were two potent sources of heavy metal exposure in the waterfowl under study. Exposure through water intake was ignored as metals were either of negligible concentrations or below the detection limit in water samples. Heavy metal concentrations showed significant positive correlations between bottom sediment and plant at both sites. At Purulia Sahebbandh (Site 1), the total exposure dose of all four metals was much higher than their conforming tolerable daily intake (TDI), and thereby, the metals might pose threats to the migratory wintering herbivorous waterfowl populations. However, in Adra Sahebbandh (Site 2), total exposure doses of Pb, Zn and Cu were much below their corresponding TDI. The Hazard Quotient (HQ) of Cr was highest followed by nonessential toxic Pb and these two elements could be considered as priority pollutants at Site 1. Prioritize threats were decreased in the following sequence: Cr > Pb > Cu > Zn at Site 1 and Cr > Zn > Pb > Cu at Site 2. Hazard Index was found to be >5 at Site 1 and for much higher metal loads a significant correlation between metal concentrations in plants, bottom sediment and exposure doses were also recorded. Therefore, the peri-urban Purulia Sahebbandh wetland could immediately be considered for risk control and demanded holistic management of important waterfowl habitats.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Animales , China , Patos , Monitoreo del Ambiente , Plomo , Metales Pesados/análisis , Plantas/metabolismo , Medición de Riesgo , Agua , Contaminantes Químicos del Agua/análisis , Humedales
6.
Environ Sci Pollut Res Int ; 29(41): 61938-61953, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35066847

RESUMEN

Titanium dioxide (TiO2) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO2, the photocatalytic activity of TiO2 is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO2 nanoparticles (TiO2 consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO2 (Type 2)) and the efficiency of both the TiO2-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated. The TiO2-GO nanocomposite with the Type 1 TiO2 exhibited greater efficiency hence further studies were conducted with that composite. The efficiency of TiO2-GO nanocomposite for the purpose of removing CBZ were investigated in presence of different types of incident radiation like Solar radiation, white light and three type of Ultraviolet radiation (A, B, C). The removal of the drug by TiO2-GO composite has been optimized using response surface methodology and artificial neural network. From this study, the maximum reduction was observed was 91.2% and whereas in case of the RSM optimization study the maximum removal that was observed was 91.7%. The validation of the RSM model was done using the mathematical analysis of the model equation of RSM. Different kinetics models was also analyzed using the experimental data and it was observed that it followed pseudo-second-order kinetics. The optimization using ANN also showed a close interaction with the experimental results.


Asunto(s)
Grafito , Nanocompuestos , Contaminantes Químicos del Agua , Carbamazepina , Catálisis , Redes Neurales de la Computación , Óxidos , Preparaciones Farmacéuticas , Titanio , Rayos Ultravioleta
7.
Mar Pollut Bull ; 173(Pt A): 113017, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34872165

RESUMEN

The study represents in vitro chemometric approach for assessing the heavy metal pollution in Indian Sundarbans. Physio-chemical and elemental characterisation of the sediment samples of Indian Sundarbans had shown high enrichments of toxic metal ions. It was characterised by elevated enrichment factors (2.16-10.12), geo-accumulation indices (0.03 -1.21), contamination factors (0.7-3.43) and pollution load indices (1.0-1.25) which showed progressive sediment quality deterioration and ecotoxicological risk due to metal ions contamination. The physio-chemical parameters of the sediments were replicated and computational chemometric modeling was utilized to assess fungal metabolic growth. All the fungi isolates had shown maximum metabolic activity in high temperature, alkaline pH, and high salinity. Further, the fungal metabolic activity was assessed in different gradient of heavy metal concentration. The significant deterioration of biochemical marker with increasing concentration of heavy metal indicates the status of the microbial health due to toxic metal pollution in the mangrove habitat.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Biomarcadores , Quimiometría , Monitoreo del Ambiente , Hongos , Sedimentos Geológicos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 28(34): 47107-47125, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33886051

RESUMEN

The present investigation attempted to examine the defluoridation feasibility onto the extracted nanocellulose/PVA polymer composites. Nanocellulose were derived from sugarcane bagasse and blended with PVA (polyvinyl alcohol) polymer matrix. The defluoridation potential of nanocellulose/PVA was observed to be significantly dependent on the various operational factors including pH, time interval, etc. the Temkin isotherm (R2 = 0.989) as well as the Langmuir isotherm equation (R2 = 0.982) could well fit with the investigational data. Following the Langmuir isotherm, the maximum monolayer adsorption capacity for fluoride elimination at 25°C was obtained as 11.363 mg g-1. The nature of rate-limiting steps involved in defluoridation process might be effectively predicted by pseudo-second-order kinetics. Values of thermodynamic state properties achieved as of the thermodynamic analysis showed that the defluoridation process was spontaneous, exothermic, and feasible. The diffusion and mass transfer study were estimated by following the Boyd's model. Average effective diffusion coefficient (De) at various initial fluoride concentrations (4-10 mg L-1) was obtained as 15.3343×10-7 m2s-1 and the estimated magnitude of the mass-transfer coefficient (Kf) was 0.0346×10-9 m s-1 (temperature = 298 K, C0= 6 mgL-1). An ANN (artificial neural network) model applied to optimize and simulate the defluoridation procedure. Furthermore, continuous flow column reactor was conducted to investigate the practical applicability of composites in the defluoridation process. The Yoon-Nelson and the Thomas model exhibited excellent conformity with the breakthrough curves. Nanocellulose/PVA satisfactorily eliminated fluoride from its aqueous solution and can be considered as a suitable bio-sorbent for defluoridation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fluoruros , Concentración de Iones de Hidrógeno , Cinética , Alcohol Polivinílico , Termodinámica , Contaminantes Químicos del Agua/análisis
9.
ACS Omega ; 5(50): 32305-32317, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33376867

RESUMEN

In the present study, a combined approach of ozone-based advanced oxidation and adsorption by activated char was employed for the treatment of a pharmaceutical industrial effluent. Ozone is a selective oxidant, but the addition of H2O2 generated in situ hydroxyl radicals, which is a non-selective stronger oxidant than ozone. The effluent obtained from the pharmaceutical industry mainly contained anti-cancer drugs, anti-psychotic drugs, and some pain killers. The peroxone process had 75-88.5% chemical oxygen demand (COD) reduction efficiency at pH 5-11 in 3 h. Adsorption by activated char further reduced the COD to 85.4-92.7% for pH 5-11 in 2.5 h. All other water quality parameters were significantly decreased (>73% removal) during ozonation. The primary operational parameters (system pH and H2O2 concentration) were also varied, and their effects were analyzed. The pseudo-first-order rate constants for ozonation were calculated, and they were found to be in the range of 1.42 × 10-4 to 3.35 × 10-4 s-1 for pH 5-11. The kinetic parameters for adsorption were calculated for the pseudo-first-order, pseudo-second-order, and Elovich models. The fit of the pseudo-first-order kinetic model to the experimental data was the best.

10.
J Environ Manage ; 276: 111272, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32871466

RESUMEN

In this study, carbonized material was produced using sodium hydroxide treated Sugar cane bagasse (SB), and synthesized materials ware used to prepare Sodium Alginate/SBAC composite beads which were further used as an adsorbent to remove malachite green dye (MG) present in water. Physiochemical characteristics of composite beads were analyzed using FTIR, SEM, TGA, and BET. Adsorption equilibrium data showed excellent fit to the Freundlich model (R2 = 0.994) than to the Langmuir model (R2 = 0.925). Adsorption kinetics study indicated that the MG removal process would be better described by the pseudo-second-order kinetic model. The thermodynamic study suggested the spontaneous and endothermic nature of MG adsorption. By using response surface methodology, the optimum conditions for MG adsorption on composite beads were found to be 115.43 min, 0.3 g/L and pH 8 for contact time, adsorbent mass, and pH respectively and MG adsorption efficiency was 97.88%. The fixed-bed column data were evaluated using several kinetic models and among them, Thomas model showed the best agreement with investigation results. These results revealed that synthesized composite beads have a high affinity toward MG and it could be reasonable, eco-friendly adsorbent for dye removal from wastewater.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Adsorción , Alginatos , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Colorantes de Rosanilina , Hidróxido de Sodio
11.
Chemosphere ; 251: 126441, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32443242

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern. PAHs adsorption to plant cell wall is facilitated by transpiration and plant root lipids which help PAHs transfer from roots to leaves and stalks, causing more accumulation of contaminants with the increase in lipid content. Hence, these bioaccumulators can be utilized as biomonitors for indirect assessment of ambient air pollution. Efficacy of specific plants, lichens and mosses as useful biomonitors of airborne PAHs pollution has been discussed in this review along with prevalent classical and modified extraction techniques coupled with proper analytical procedures in order to gain an insight into the assessment of atmospheric PAHs concentrations. Different modern and modified solvent extraction techniques along with conventional Soxhlet method are identified for extraction of PAHs from accumulative bioindicators and analytical methods are also developed for accurate determination of PAHs. Process parameters like choice of solvent, temperature, time of extraction, pressure and matrix characteristics are usually checked. An approach of biomonitoring of PAHs using plants, lichens and mosses has been discussed here as they usually trap the atmospheric PAHs and mineralize them.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire , Briófitas , Líquenes , Hojas de la Planta/química , Solventes
12.
Environ Sci Pollut Res Int ; 27(17): 20629-20647, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31385251

RESUMEN

The current study emphasises on sorptive expulsion of phenol from aqueous solution using ortho-phosphoric acid (STAC-O) and sulphuric acid (STAC-H)-activated biochar derived from spent tea waste. STAC-O and STAC-H were instrumentally anatomised using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), BET surface area and thermal gravimetric analyser. Equilibrium and kinetic data were implemented for the investigative parametric batch study to prospect the influence of adsorbent dosage, contact time, initial concentration and pH for eradication of phenol from aqueous solution. The maximum phenolic removals by STAC-O and STAC-H are 93.59% and 91.024% respectively at the parametric conditions of adsorbent dosage 3 g/l time 2 h, initial phenol concentration 100 mg/l and pH 8. Non-linear regression of adsorption isotherms and kinetics was accomplished using the equilibrium data. Both the specimens were compared, and it delineated that Temkin isotherm model is contented. The maximum adsorption intakes for STAC-H and STAC-O were 185.002 mg/g and 154.39 mg/g respectively. Pseudo-second-order kinetic model was best fitted for portraying the chemisorption phenomena. Boyd kinetic and intra-particle diffusion model were investigated to elucidate the diffusion mechanism involved in the process. Desorption study was employed for determining the regeneration proficiency of the adsorbents using water, ethanol and NaOH with maximum 93% and 51.16% extrusion for STAC-O and STAC-H respectively. The process parameters involved in this study were further analysed using artificial neural network perusal to determine the input-output relationships and data pattern. The overall adsorption study along with cost estimation exhibited that bidirectional activation of spent tea biochar was prospective in abatement of phenol from aqueous media.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Redes Neurales de la Computación , Fenol , Estudios Prospectivos , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfúricos , , Temperatura , Termodinámica
13.
J Environ Manage ; 223: 185-195, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929074

RESUMEN

This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater.


Asunto(s)
Colorantes/aislamiento & purificación , Pseudomonas , Industria Textil , Biodegradación Ambiental , Ceniza del Carbón , Purificación del Agua
14.
3 Biotech ; 8(4): 192, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29576998

RESUMEN

The present study investigated the removal of azo dye (crystal violet) by adsorption (using a low-cost adsorbent fly ash), biodegradation (using bacterial species, Pseudomonas sp.), and an integrated approach of sorption coupled with biodegradation (using fly ash immobilized with Pseudomonas sp.) on a comparative scale. To ascertain immobilization of bacteria on fly ash, immobilized bacterial cells were characterized by energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier-transform-infrared spectroscopy, and fluorescence microscopy. Batch studies were conducted for optimization of the process parameters for ensuring maximum dye removal. The optimum pH, temperature, and initial dye concentration for the highest percentage of dye removal were found to be pH 7, 37 °C, and 50 mg/L in all the three cases. Under optimized conditions, the highest percentage of dye removal was found to be 89.24, 79.64, and 99.04% for biodegradation, sorption, and integrated approach of sorption and biodegradation, respectively. Finally, phytotoxicity studies carried out with the treated water on Cicer arietinum seeds also carried proved that these processes and the adsorbent did not exert any toxic effects on the seeds. Artificial neural network modeling revealed a close interaction between theoretically predicted and experimentally obtained results and with an error of around 1.1%. Thus, this novel, environmentally sustainable and economically viable technique may be applied for effective removal of crystal violet from industrial wastewater.

15.
J Environ Manage ; 212: 424-432, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29455150

RESUMEN

Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter. Data obtained from this study indicated that columns with the thickest bed, lowest flow rate, and fluoride concentration showed best column performance. Bio-sorbents used in this study are regenerable and reusable for more than five cycles. The initial materials cost needed to remove one gram of fluoride also found to be lower than the available alternatives. This makes the process more promising candidate to be used for fluoride removal. In addition, the process is also technically advantageous over the available alternatives.


Asunto(s)
Formaldehído , Glicéridos , Fenoles , Polímeros , Terpenos , Purificación del Agua , Adsorción , Fluoruros , Agua , Contaminantes Químicos del Agua
16.
3 Biotech ; 7(2): 99, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28560639

RESUMEN

Gradual increase in concentration of carbon dioxide (CO2) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

17.
Ecotoxicol Environ Saf ; 119: 47-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25966335

RESUMEN

Azo dyes pose a major threat to current civilization by appearing in almost all streams of wastewater. The present investigation was carried out to examine the potential of Graphene oxide (GO) nanoplatelets as an efficient, cost-effective and non-toxic azo dye adsorbent for efficient wastewater treatment. The treatment process was optimized using Artificial Neural Network for maximum percentage dye removal and evaluated in terms of varying operational parameters, process kinetics and thermodynamics. A brief toxicity assay was also designed using fresh water snail Bellamya benghalensis to analyze the quality of the treated solution. 97.78% removal of safranin dye was obtained using GO as adsorbent. Characterization of GO nanoplatelets (using SEM, TEM, AFM and FTIR) reported the changes in its structure as well as surface morphology before and after use and explained its prospective as a good and environmentally benign adsorbent in very low quantities. The data recorded when subjected to different isotherms best fitted the Temkin isotherm. Further analysis revealed the process to be endothermic and chemisorption in nature. The verdict of the toxicity assay rendered the treated permeate as biologically safe for discharge or reuse in industrial and domestic purposes.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes/toxicidad , Grafito , Residuos Industriales , Nanopartículas/química , Fenazinas/toxicidad , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Adsorción , Compuestos Azo/química , Colorantes/aislamiento & purificación , Simulación por Computador , Concentración de Iones de Hidrógeno , Residuos Industriales/prevención & control , Azul de Metileno/química , Redes Neurales de la Computación , Óxidos/química , Fenazinas/aislamiento & purificación , Termodinámica , Contaminantes Químicos del Agua/aislamiento & purificación
18.
Environ Sci Pollut Res Int ; 22(2): 1318-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25138552

RESUMEN

Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions. Around 99.85 % removal of CV was obtained at initial pH 6.4, which further increased to 99.98 % on using soil and cement composite proving it to be the best admixture of those selected. The phenomenon was found to be represented best by the Langmuir isotherm at different temperatures. The process followed the pseudo-second-order kinetic model and was determined to be spontaneous chemisorption in nature. This adsorbent can hence be suggested as an appropriate liner material for the removal of CV dye.


Asunto(s)
Colorantes/química , Restauración y Remediación Ambiental/métodos , Violeta de Genciana/química , Suelo/química , Adsorción , Cinética , Modelos Teóricos , Textiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...