Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 97-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134846

RESUMEN

To investigate the cell behavior underlying neuronal differentiation in a physiologically relevant context, differentiating neurons must be studied in their native tissue environment. Here, we describe an accessible protocol for fluorescent live imaging of differentiating neurons within ex vivo embryonic chicken spinal cord slice cultures, which facilitates long-term observation of individual cells within developing tissue.


Asunto(s)
Diferenciación Celular , Electroporación , Neuronas , Médula Espinal , Animales , Electroporación/métodos , Médula Espinal/citología , Médula Espinal/embriología , Embrión de Pollo , Neuronas/citología , Neuronas/metabolismo , Pollos , Neurogénesis
2.
Methods Mol Biol ; 2831: 315-324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134859

RESUMEN

The cell intrinsic mechanisms directing peripheral nerve regeneration have remained largely understudied, thus limiting our understanding of these processes and constraining the advancement of novel clinical therapeutics. The use of primary adult rat dorsal root ganglion (DRG) neurons cultured in vitro is well established. Despite this, these cells can be challenging to culture and have so far not been amenable to robust transfection or live-cell imaging. The ability to transfect these cells with fluorescent plasmid constructs to label subcellular structures, combined with high resolution time-lapse imaging has the potential to provide invaluable insight into how peripheral neurons coordinate their regenerative response, and which specific cellular structures are involved in this process. Here we describe a protocol that facilitates transfection and subsequent live-imaging of adult rat DRG neurons.


Asunto(s)
Ganglios Espinales , Regeneración Nerviosa , Neuronas , Animales , Ganglios Espinales/citología , Regeneración Nerviosa/fisiología , Ratas , Neuronas/citología , Neuronas/fisiología , Neuronas/metabolismo , Células Cultivadas , Transfección/métodos , Imagen de Lapso de Tiempo/métodos
3.
Oxf Open Neurosci ; 1: kvac007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38596701

RESUMEN

The initiation of nascent projections, or neurites, from the neuronal cell body is the first stage in the formation of axons and dendrites, and thus a critical step in the establishment of neuronal architecture and nervous system development. Neurite formation relies on the polarized remodelling of microtubules, which dynamically direct and reinforce cell shape, and provide tracks for cargo transport and force generation. Within neurons, microtubule behaviour and structure are tightly controlled by an array of regulatory factors. Although microtubule regulation in the later stages of axon development is relatively well understood, how microtubules are regulated during neurite initiation is rarely examined. Here, we discuss how factors that direct microtubule growth, remodelling, stability and positioning influence neurite formation. In addition, we consider microtubule organization by the centrosome and modulation by the actin and intermediate filament networks to provide an up-to-date picture of this vital stage in neuronal development.

4.
Sci Adv ; 6(21): eabb0601, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494754

RESUMEN

Cellular differentiation leads to the formation of specialized cell types and complex morphological variations. Often, differentiating cells transition between states by switching how they respond to the signaling environment. However, the mechanisms regulating these transitions are poorly understood. Differentiating neurons delaminate from the neuroepithelium through the regulated process of apical abscission, which mediates an acute loss of polarity and primary cilium disassembly. Using high-resolution live-cell imaging in chick neural tube, we show that these cells retain an Arl13b+ particle, which elongates and initiates intraflagellar trafficking as it transits toward the cell body, indicating primary cilium remodeling. Notably, disrupting cilia during and after remodeling inhibits axon extension and leads to axon collapse, respectively. Furthermore, cilium remodeling corresponds to a switch from a canonical to noncanonical cellular response to Shh. This work transforms our understanding of how cells can rapidly reinterpret signals to produce qualitatively different responses within the same tissue context.


Asunto(s)
Cilios , Transducción de Señal , Tubo Neural/metabolismo , Neurogénesis , Neuronas , Transducción de Señal/fisiología
5.
PLoS Biol ; 18(3): e3000470, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150534

RESUMEN

In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.


Asunto(s)
Proteínas de la Membrana/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Animales , Adhesión Celular , Embrión de Pollo , Perros , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Uniones Estrechas/metabolismo , Imagen de Lapso de Tiempo
6.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058679

RESUMEN

Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.


Asunto(s)
Actinas/metabolismo , Diferenciación Celular , Centrosoma/metabolismo , Microtúbulos/metabolismo , Morfogénesis , Sistema Nervioso/embriología , Neuronas/fisiología , Animales , Transporte Biológico , Embrión de Pollo , Microscopía Intravital , Microscopía Fluorescente
7.
Development ; 141(16): 3266-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063452

RESUMEN

Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFß). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation.


Asunto(s)
Cromatina/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Transcriptoma , Animales , Tipificación del Cuerpo , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Epigénesis Genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ARN , Transducción de Señal , Médula Espinal/embriología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
8.
Science ; 343(6167): 200-4, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24408437

RESUMEN

Withdrawal of differentiating cells from proliferative tissue is critical for embryonic development and adult tissue homeostasis; however, the mechanisms that control this cell behavior are poorly understood. Using high-resolution live-cell imaging in chick neural tube, we uncover a form of cell subdivision that abscises apical cell membrane and mediates neuron detachment from the ventricle. This mechanism operates in chick and mouse, is dependent on actin-myosin contraction, and results in loss of apical cell polarity. Apical abscission also dismantles the primary cilium, known to transduce sonic-hedgehog signals, and is required for expression of cell-cycle-exit gene p27/Kip1. We further show that N-cadherin levels, regulated by neuronal-differentiation factor Neurog2, determine cilium disassembly and final abscission. This cell-biological mechanism may mediate such cell transitions in other epithelia in normal and cancerous conditions.


Asunto(s)
Polaridad Celular , Neurogénesis , Neuronas/citología , Actinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cadherinas/metabolismo , Carcinogénesis/patología , División Celular , Embrión de Pollo , Cilios/ultraestructura , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ratones , Miosinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura
9.
J Vis Exp ; (62)2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22525126

RESUMEN

The embryonic spinal cord consists of cycling neural progenitor cells that give rise to a large percentage of the neuronal and glial cells of the central nervous system (CNS). Although much is known about the molecular mechanisms that pattern the spinal cord and elicit neuronal differentiation, we lack a deep understanding of these early events at the level of cell behavior. It is thus critical to study the behavior of neural progenitors in real time as they undergo neurogenesis. In the past, real-time imaging of early embryonic tissue has been limited by cell/tissue viability in culture as well as the phototoxic effects of fluorescent imaging. Here we present a novel assay for imaging such tissue for long periods of time, utilizing a novel ex vivo slice culture protocol and wide-field fluorescence microscopy (Fig. 1). This approach achieves long-term time-lapse monitoring of chick embryonic spinal cord progenitor cells with high spatial and temporal resolution. This assay may be modified to image a range of embryonic tissues. In addition to the observation of cellular and sub-cellular behaviors, the development of novel and highly sensitive reporters for gene activity (for example, Notch signaling) makes this assay a powerful tool with which to understand how signaling regulates cell behavior during embryonic development.


Asunto(s)
Desarrollo Embrionario/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Células Neuroepiteliales/citología , Animales , Embrión de Pollo , Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Médula Espinal
10.
EMBO Rep ; 13(5): 448-54, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22491029

RESUMEN

Inheritance of apical membrane is proposed to maintain vertebrate neural stem cell proliferation. However, evidence for this is contradictory. Using direct clonal analysis and live imaging in chick neural tube, we show that divisions that separate apical and basal components generate an apical daughter, which becomes a neuron, and a basal daughter, which rapidly re-establishes apico-basal polarity and divides again. Using a recently described real-time reporter of Notch activity, we confirm progenitor status and demonstrate that division orientation can influence Notch signalling. In addition, we reveal loss of apical complex proteins on neuronal differentiation onset, suggesting that removal of this inherited complex is part of the neuronal differentiation mechanism. These findings reconcile contradictory data, link asymmetric division to Notch signalling dynamics and identify apical complex loss as a new step towards neuronal differentiation.


Asunto(s)
Tubo Neural/metabolismo , Receptores Notch/metabolismo , Huso Acromático/metabolismo , Animales , Diferenciación Celular/fisiología , Embrión de Pollo , Pollos , Transducción de Señal/fisiología
11.
J Cell Biol ; 194(3): 489-503, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21807879

RESUMEN

Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.


Asunto(s)
Transición Epitelial-Mesenquimal , Factores de Crecimiento de Fibroblastos/metabolismo , Cresta Neural/citología , Tretinoina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Ciclo Celular , Movimiento Celular , Sistema Nervioso Central/embriología , Embrión de Pollo , Electroporación , Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cresta Neural/metabolismo , Cresta Neural/fisiología , Sistema Nervioso Periférico/embriología , Reacción en Cadena de la Polimerasa , Transducción de Señal , Factores de Transcripción/biosíntesis , Proteínas Wnt/metabolismo
12.
BMC Neurosci ; 12: 37, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21554727

RESUMEN

BACKGROUND: The vertebrate peripheral nervous system contains sensory neurons that arise from ectodermal placodes. Placodal cells ingress to move inside the head to form sensory neurons of the cranial ganglia. To date, however, the process of placodal cell ingression and underlying cellular behavior are poorly understood as studies have relied upon static analyses on fixed tissues. Visualizing placodal cell behavior requires an ability to distinguish the surface ectoderm from the underlying mesenchyme. This necessitates high resolution imaging along the z-plane which is difficult to accomplish in whole embryos. To address this issue, we have developed an imaging system using cranial slices that allows direct visualization of placode formation. RESULTS: We demonstrate an effective imaging assay for capturing placode development at single cell resolution using chick embryonic tissue ex vivo. This provides the first time-lapse imaging of mitoses in the trigeminal placodal ectoderm, ingression, and intercellular contacts of placodal cells. Cell divisions with varied orientations were found in the placodal ectoderm all along the apical-basal axis. Placodal cells initially have short cytoplasmic processes during ingression as young neurons and mature over time to elaborate long axonal processes in the mesenchyme. Interestingly, the time-lapse imaging data reveal that these delaminating placodal neurons begin ingression early on from within the ectoderm, where they start to move and continue on to exit as individual or strings of neurons through common openings on the basal side of the epithelium. Furthermore, dynamic intercellular contacts are abundant among the delaminating placodal neurons, between these and the already delaminated cells, as well as among cells in the forming ganglion. CONCLUSIONS: This new imaging assay provides a powerful method to analyze directly development of placode-derived sensory neurons and subsequent ganglia formation for the first time in amniotes. Viewing placode development in a head cross-section provides a vantage point from which it is possible to study comprehensive events in placode formation, from differentiation, cell ingression to ganglion assembly. Understanding how placodal neurons form may reveal a new mechanism of neurogenesis distinct from that in the central nervous system and provide new insight into how cells acquire motility from a stationary epithelial cell type.


Asunto(s)
Movimiento Celular/fisiología , Microscopía Fluorescente/métodos , Morfogénesis/fisiología , Células Receptoras Sensoriales/fisiología , Imagen de Lapso de Tiempo/métodos , Animales , División Celular/fisiología , Embrión de Pollo
13.
Development ; 138(10): 1893-902, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21521736

RESUMEN

The size, composition and functioning of the spinal cord is likely to depend on appropriate numbers of progenitor and differentiated cells of a particular class, but little is known about how cell numbers are controlled in specific cell cohorts along the dorsoventral axis of the neural tube. Here, we show that FatJ cadherin, identified in a large-scale RNA interference (RNAi) screen of cadherin genes expressed in the neural tube, is localised to progenitors in intermediate regions of the neural tube. Loss of function of FatJ promotes an increase in dp4-vp1 progenitors and a concomitant increase in differentiated Lim1(+)/Lim2(+) neurons. Our studies reveal that FatJ mediates its action via the Hippo pathway mediator Yap1: loss of downstream Hippo components can rescue the defect caused by loss of FatJ. Together, our data demonstrate that RNAi screens are feasible in the chick embryonic neural tube, and show that FatJ acts through the Hippo pathway to regulate cell numbers in specific subsets of neural progenitor pools and their differentiated progeny.


Asunto(s)
Proteínas Aviares/metabolismo , Cadherinas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Secuencia de Bases , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Recuento de Células , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal
14.
Nat Neurosci ; 11(3): 269-76, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18278043

RESUMEN

Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest-placode interactions during trigeminal gangliogenesis.


Asunto(s)
Movimiento Celular/genética , Glicoproteínas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/embriología , Receptores Inmunológicos/metabolismo , Células Madre/metabolismo , Ganglio del Trigémino/embriología , Animales , Comunicación Celular/genética , Diferenciación Celular/genética , Embrión de Pollo , Pollos , Coturnix , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Proteínas del Tejido Nervioso/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Interferencia de ARN , Receptores Inmunológicos/genética , Células Madre/citología , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Proteínas Roundabout
15.
Dev Biol ; 294(2): 554-63, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16574096

RESUMEN

RNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo.


Asunto(s)
Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Operón , Interferencia de ARN , Animales , Línea Celular , Embrión de Pollo/anatomía & histología , Embrión de Pollo/fisiología , Silenciador del Gen , Vectores Genéticos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , MicroARNs/genética , Proteínas Nucleares , Regiones Promotoras Genéticas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA