Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(7)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37510384

RESUMEN

Assessing the genetic diversity and population structure of cultivated sorghum is important for heterotic grouping, breeding population development, marker-assisted cultivar development, and release. The objectives of the present study were to assess the genetic diversity and deduce the population structure of 200 sorghum accessions using diversity arrays technology (DArT)-derived single nucleotide polymorphism (SNP) markers. The expected heterozygosity values ranged from 0.10 to 0.50 with an average of 0.32, while the average observed heterozygosity (0.15) was relatively low, which is a typical value for autogamous crops species like sorghum. Moderate polymorphic information content (PIC) values were identified with a mean of 0.26, which indicates the informativeness of the chosen SNP markers. The population structure and cluster analyses revealed four main clusters with a high level of genetic diversity among the accessions studied. The variation within populations (41.5%) was significantly higher than that among populations (30.8%) and between samples within the structure (27.7%). The study identified distantly related sorghum accessions such as SAMSORG 48, KAURA RED GLUME; Gadam, AS 152; CSRO1, ICNSL2014-062; and YALAI, KAFI MORI. The accessions exhibited wide genetic diversity that will be useful in developing new gene pools and novel genotypes for West Africa sorghum breeding programs.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sorghum , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética , Sorghum/genética , Fitomejoramiento , Genotipo , Grano Comestible
2.
Front Plant Sci ; 14: 1143512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008459

RESUMEN

Due to evolutionary divergence, sorghum race populations exhibit significant genetic and morphological variation. A k-mer-based sorghum race sequence comparison identified the conserved k-mers of all 272 accessions from sorghum and the race-specific genetic signatures identified the gene variability in 10,321 genes (PAVs). To understand sorghum race structure, diversity and domestication, a deep learning-based variant calling approach was employed in a set of genotypic data derived from a diverse panel of 272 sorghum accessions. The data resulted in 1.7 million high-quality genome-wide SNPs and identified selective signature (both positive and negative) regions through a genome-wide scan with different (iHS and XP-EHH) statistical methods. We discovered 2,370 genes associated with selection signatures including 179 selective sweep regions distributed over 10 chromosomes. Co-localization of these regions undergoing selective pressure with previously reported QTLs and genes revealed that the signatures of selection could be related to the domestication of important agronomic traits such as biomass and plant height. The developed k-mer signatures will be useful in the future to identify the sorghum race and for trait and SNP markers for assisting in plant breeding programs.

3.
Front Plant Sci ; 12: 666342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140962

RESUMEN

Sorghum (Sorghum bicolor L.) is a staple food crops in the arid and rainfed production ecologies. Sorghum plays a critical role in resilient farming and is projected as a smart crop to overcome the food and nutritional insecurity in the developing world. The development and characterisation of the sorghum pan-genome will provide insight into genome diversity and functionality, supporting sorghum improvement. We built a sorghum pan-genome using reference genomes as well as 354 genetically diverse sorghum accessions belonging to different races. We explored the structural and functional characteristics of the pan-genome and explain its utility in supporting genetic gain. The newly-developed pan-genome has a total of 35,719 genes, a core genome of 16,821 genes and an average of 32,795 genes in each cultivar. The variable genes are enriched with environment responsive genes and classify the sorghum accessions according to their race. We show that 53% of genes display presence-absence variation, and some of these variable genes are predicted to be functionally associated with drought adaptation traits. Using more than two million SNPs from the pan-genome, association analysis identified 398 SNPs significantly associated with important agronomic traits, of which, 92 were in genes. Drought gene expression analysis identified 1,788 genes that are functionally linked to different conditions, of which 79 were absent from the reference genome assembly. This study provides comprehensive genomic diversity resources in sorghum which can be used in genome assisted crop improvement.

4.
Sci Rep ; 11(1): 12197, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108516

RESUMEN

Forty-five African or Asian origin pearl millet populations bred either in Africa or Asia were investigated to generate information on heterotic pools. They were clustered into seven groups (G1 to G7) when genotyped, using 29 highly polymorphic SSRs. Fourteen parental populations representing these seven marker-based groups were crossed in diallel mating design to generate 91 population hybrids. The hybrids evaluated at three locations in India showed mean panmictic mid-parent heterosis (PMPH) and better-parent heterosis (PBPH) for grain yield ranging from - 21.7 to 62.08% and - 32.51 to 42.99%, respectively. Higher grain yield and heterosis were observed in G2 × G6 (2462 kg ha-1, 43.2%) and G2 × G5 (2455 kg ha-1, 42.8%) marker group crosses compared to the most popular Indian open-pollinated variety (OPV) ICTP 8203. Two heterotic groups, Pearl millet Population Heterotic Pool-1 (PMPHP-1) comprising G2 populations and Pearl millet Population Heterotic Pool-2 (PMPHP-2) comprising G5 and G6 populations, were identified based on hybrid performance, heterosis and combining ability among marker group crosses. Population hybrids from two heterotic groups, PMPHP-1 × PMPHP-2 demonstrated PMPH of 14.75% and PBPH of 6.8%. Populations of PMPHP-1 had linkages with either African or Asian origin populations, whereas PMPHP-2 composed of populations originating in Africa and later bred for Asian environments. Results indicated that parental populations from the two opposite heterotic groups can be used as base populations to derive superior inbred lines to develop high yielding hybrids/cultivars.

5.
Front Plant Sci ; 12: 643192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968102

RESUMEN

Exploring the natural genetic variability and its exploitation for improved Nitrogen Use Efficiency (NUE) in sorghum is one of the primary goals in the modern crop improvement programs. The integrated strategies include high-throughput phenotyping, next generation sequencing (NGS)-based genotyping technologies, and a priori selected candidate gene studies that help understand the detailed physiological and molecular mechanisms underpinning this complex trait. A set of sixty diverse sorghum genotypes was evaluated for different vegetative, reproductive, and yield traits related to NUE in the field (under three N regimes) for two seasons. Significant variations for different yield and related traits under 0 and 50% N confirmed the availability of native genetic variability in sorghum under low N regimes. Sorghum genotypes with distinct genetic background had interestingly similar NUE associated traits. The Genotyping-By-Sequencing based SNPs (>89 K) were used to study the population structure, and phylogenetic groupings identified three distinct groups. The information of grain N and stalk N content of the individuals covered on the phylogenetic groups indicated randomness in the distribution for adaptation under variable N regimes. This study identified promising sorghum genotypes with consistent performance under varying environments, with buffer capacity for yield under low N conditions. We also report better performing genotypes for varied production use-grain, stover, and dual-purpose sorghum having differential adaptation response to NUE traits. Expression profiling of NUE associated genes in shoot and root tissues of contrasting lines (PVK801 and HDW703) grown in varying N conditions revealed interesting outcomes. Root tissues of contrasting lines exhibited differential expression profiles for transporter genes [ammonium transporter (SbAMT), nitrate transporters (SbNRT)]; primary assimilatory (glutamine synthetase (SbGS), glutamate synthase (SbGOGAT[NADH], SbGOGAT[Fd]), assimilatory genes [nitrite reductase (SbNiR[NADH]3)]; and amino acid biosynthesis associated gene [glutamate dehydrogenase (SbGDH)]. Identification and expression profiling of contrasting sorghum genotypes in varying N dosages will provide new information to understand the response of NUE genes toward adaptation to the differential N regimes in sorghum. High NUE genotypes identified from this study could be potential candidates for in-depth molecular analysis and contribute toward the development of N efficient sorghum cultivars.

6.
Protein Pept Lett ; 28(8): 909-928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33588716

RESUMEN

BACKGROUND: Production of biofuels from lignocellulosic crop biomass is an alternative to reduce greenhouse gas emissions. The biofuel production involves collecting biomass, breaking down cell wall components followed by the conversion of sugars to ethanol. The lingo-cellulosic biomass comprises 40-50% cellulose, 20-30% hemicellulose, and 10-25% lignin. Sorghum is a widely adapted energy crop for biofuel production. Biomass with low lignin, high cellulose, and high hemicellulose contents are exploited to attain maximum biofuel production efficiency. Resistance to lodging, pest, disease, and abiotic stresses related to cell wall components is well documented, and quantitative trait loci were identified to understand these traits' genetic correlation. Selection for reduced lignin and increased cellulose content in stover can increase the ethanol yield. The Genome-Wide Association Studies (GWAS) is a complementary approach to evaluating the marker and phenotype associations among large diversity panels. Single nucleotide polymorphisms were scanned to identify loci associated with the traits of interest. In this study, the GWAS was performed on 245 sorghum minicore genotypes to analyze agronomic traits (days to 50%flowering, fresh biomass yield, dry biomass yield) and cell wall components (cellulose, hemicellulose, and lignin). Further, in-silico validation of the candidate genes was performed in a global gene expression data from large-scale RNA sequencing studies in sorghum available in the NCBI GEO database was used. OBJECTIVE: The objectives of this study are to evaluate native variations in biofuel related agronomic traits and stalk cell wall components and to identify significant SNPs or loci related to the cell wall components. METHODS: In this article, an association mapping panel, comprising of 245 sorghum minicore germplasm accessions, was evaluated during two post rainy seasons of 2013 and 2014, and observations were recorded on the whole plot- for days to 50% flowering, fresh biomass yield (tha-1, and dry biomass yield (tha-1). The biomass of sun-dried plants from both seasons was collected separately, chopped, dried, and ground to powder. The cellulose, hemicellulose, and lignin contents were determined in the powdered. The content of each of these three components in sorghum was expressed in percent of dry matter. The data on agronomic traits and composition analysis was subjected to Analysis of Variance. For the current study, we remapped the raw GBS data with the sorghum assembly version v3.1. A total of 27,589 SNPs were obtained with a minor allele frequency (MAF) >1% and missing data <50%. The GWAS was performed in a single minicore population using FarmCPU, in R software. The synteny positions of the identified significant SNPs between sorghum and other model crop species viz., maize, switchgrass, and Arabidopsis were represented using CIRCOS software for traits viz., dry biomass yield, cellulose, hemicellulose, and lignin. The transcriptome dataset from where sorghum gene atlas studies of grain, sweet, and bioenergy sorghums are available through NCBI's Gene Expression Omnibus (GEO) under accession number GSE49879, was used to cross-validate the identified SNPs for cellulose, hemicellulose, and lignin through GWAS. RESULTS: High broad-sense heritability was exhibited for all the traits in individual seasons along with significant genotype × environment interaction across seasons except lignin. Association mapping with a P < 1×10-4 revealed genomic regions associated with the- (i) agronomic traits (days to 50% flowering, fresh and dry biomass), and (ii) biochemical traits (cellulose, hemicellulose, and lignin) associated with biofuels production, in individual seasons. Twelve significant SNPs for flowering time, 30 fresh biomass yields, and 24 for dry biomass yield, 25 for cellulose, 7 for hemicellulose, and 21 for lignin were identified. CIRCOS plot was constructed to identify and analyze similarities and differences while comparing the sorghum genome with different crops. For cellulose high similarity of >80% was observed for all sorghum gene sequences with the maize homologs. The overall similarity of sorghum homologs with foxtail millet was >65%, for Arabidopsis from 30.6% to 48.6%, and rice from 28.2% to 92.8%. SNPs for hemicellulose displayed maximum similarity to foxtail millet followed by maize. The sequence similarity of lignin SNPs in sorghum was highest with the maize genome followed by Arabidopsis. Both rice and foxtail millet showed >55% similarity to the sorghum genome. CONCLUSION: This study reports large variability for agronomic and biofuel traits in the sorghum minicore collection with high heritability. The genetic architecture of cell wall components using the GWAS approach was studied and candidate genes for each component were annotated. These results give a better understanding of the genetic basis of the sorghum cell wall composition. The association analysis identified regions of the genome that could be targeted to enhance the quality of biomass and yield along with the desired composition promoting breeding efficiency for enhanced biofuel yield.


Asunto(s)
Biocombustibles , Biomasa , Genoma de Planta , Polimorfismo de Nucleótido Simple , Sorghum , Estudio de Asociación del Genoma Completo , Sorghum/genética , Sorghum/crecimiento & desarrollo
7.
Front Plant Sci ; 12: 625915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613608

RESUMEN

Nitrogen (N) is one of the primary macronutrients required for crop growth and yield. This nutrient is especially limiting in the dry and low fertility soils where pearl millet [Pennisetum glaucum (L.) R. Br] is typically grown. Globally, pearl millet is the sixth most important cereal grown by subsistence farmers in the arid and semi-arid regions of sub-Saharan Africa and the Indian subcontinent. Most of these agro-ecologies have low N in the root zone soil strata. Therefore, there is an immense need to identify lines that use nitrogen efficiently. A set of 380 diverse pearl millet lines consisting of a global diversity panel (345), parents of mapping populations (20), and standard checks (15) were evaluated in an alpha-lattice design with two replications, 25 blocks, a three-row plot for 11 nitrogen use efficiency (NUE) related traits across three growing seasons (Summer 2017, Rainy 2017, and Summer 2018) in an N-depleted precision field under three different N levels (0%-N0, 50%-N50, 100%-N100 of recommended N, i.e., 100 kg ha-1). Analysis of variance revealed significant genetic variation for NUE-related traits across treatments and seasons. Nitrogen in limited condition (N0) resulted in a 27.6 and 17.6% reduction in grain yield (GY) and dry stover yield (DSY) compared to N50. Higher reduction in GY and DSY traits by 24.6 and 23.6% were observed under N0 compared to N100. Among the assessed traits, GY exhibited significant positive correlations with nitrogen utilization efficiency (NUtE) and nitrogen harvest index (NHI). This indicated the pivotal role of N remobilization to the grain in enhancing yield levels. Top 25 N-insensitive (NIS-top grain yielders) and N-sensitive (NS-poor grain yielders) genotypes were identified under low N conditions. Out of 25 NIS lines, nine genotypes (IP 10820, IP 17720, ICMB 01222-P1, IP 10379, ICMB 89111-P2, IP 8069, ICMB 90111-P2, ICMV IS89305, and ICMV 221) were common with the top 25 lines for N100 level showing the genotype plasticity toward varying N levels. Low N tolerant genotypes identified from the current investigation may help in the identification of genomic regions responsible for NUE and its deployment in pearl millet breeding programs through marker-assisted selection (MAS).

8.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205138

RESUMEN

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

9.
Theor Appl Genet ; 133(3): 873-888, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897515

RESUMEN

KEY MESSAGE: Pearl millet breeding programs can use this heterotic group information on seed and restorer parents to generate new series of pearl millet hybrids having higher yields than the existing hybrids. Five hundred and eighty hybrid parents, 320 R- and 260 B-lines, derived from 6 pearl millet breeding programs in India, genotyped following RAD-GBS (about 0.9 million SNPs) clustered into 12 R- and 7 B-line groups. With few exceptions, hybrid parents of all the breeding programs were found distributed across all the marker-based groups suggesting good diversity in these programs. Three hundred and twenty hybrids generated using 37 (22 R and 15 B) representative parents, evaluated for grain yield at four locations in India, showed significant differences in yield, heterosis, and combining ability. Across all the hybrids, mean mid- and better-parent heterosis for grain yield was 84.0% and 60.5%, respectively. Groups G12 B × G12 R and G10 B × G12 R had highest heterosis of about 10% over best check hybrid Pioneer 86M86. The parents involved in heterotic hybrids were mainly from the groups G4R, G10B, G12B, G12R, and G13B. Based on the heterotic performance and combining ability of groups, 2 B-line (HGB-1 and HGB-2) and 2 R-line (HGR-1 and HGR-2) heterotic groups were identified. Hybrids from HGB-1 × HGR-1 and HGB-2 × HGR-1 showed grain yield heterosis of 10.6 and 9.3%, respectively, over best hybrid check. Results indicated that parental groups can be formed first by molecular markers, which may not predict the best hybrid combination, but it can reveal a practical value of assigning existing and new hybrid pearl millet parental lines into heterotic groups to develop high-yielding hybrids from the different heterotic groups.


Asunto(s)
Vigor Híbrido , Pennisetum/genética , Semillas/genética , Ligamiento Genético , Marcadores Genéticos , Genotipo , Hibridación Genética , India , Pennisetum/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Semillas/crecimiento & desarrollo
10.
Theor Appl Genet ; 133(3): 737-749, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31844966

RESUMEN

This study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1. On the other hand, 107 QTLs explaining 11-29% phenotypic variation were detected in BP-2. Although most QTLs were environment and trait specific, few stable and consistent QTLs were also detected. Interestingly, 11 QTLs in BP-2 were associated with more than one trait. Among these QTLs, eight QTLs associated with days to 50% flowering and days to 75% maturity were located on CcLG07. One SNP "S7_14185076" marker in BP-2 population has been found associated with four traits, namely days to 50% flowering, days to 75% maturity, primary branches per plant and secondary branches per plant with positive additive effect. Hence, the present study has not only identified QTLs for yield-related traits, but also discovered novel alleles from wild species, which can be used for improvement of traits through genomics-assisted breeding.


Asunto(s)
Cajanus/crecimiento & desarrollo , Cajanus/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genómica , Genotipo , Técnicas de Genotipaje , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
11.
Plant Genome ; 11(3)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30512043

RESUMEN

As one of the major outputs of next-generation sequencing (NGS), a large number of genome-wide single-nucleotide polymorphisms (SNPs) have been developed in pigeonpea [ (L.) Huth.]. However, SNPs require a genotyping platform or assay to be used in different evolutionary studies or in crop improvement programs. Therefore, we developed an Axiom SNP array with 56K SNPs uniformly distributed across the genome and assessed its utility in a genetic diversity study. From the whole-genome resequencing (WGRS) data on 104 pigeonpea lines, ∼2 million sequence variations (SNPs and insertion-deletions [InDels]) were identified, from which a subset of 56,512 unique and informative sequence variations were selected to develop the array. The Axiom SNP array developed was used for genotyping 103 pigeonpea lines encompassing 63 cultivars released between 1960 and 2014 and 40 breeding, germplasm, and founder lines. Genotyping data thus generated on 103 pigeonpea lines provided 51,201 polymorphic SNPs and InDels. Genetic diversity analysis provided in-depth insights into the genetic architecture and trends in temporal diversity in pigeonpea cultivars. Therefore, the continuous use of the high-density Axiom SNP array developed will accelerate high-resolution trait mapping, marker-assisted breeding, and genomic selection efforts in pigeonpea.


Asunto(s)
Cajanus/genética , Genoma de Planta , Polimorfismo de Nucleótido Simple , Efecto Fundador , Variación Genética , Genotipo , Fitomejoramiento , Análisis por Matrices de Proteínas
12.
Genes (Basel) ; 9(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404223

RESUMEN

Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum.

13.
Sci Rep ; 8(1): 13115, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158643

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
Int J Mol Sci ; 19(8)2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044369

RESUMEN

Chickpea (Cicer arietinum L.), a cool-season legume, is increasingly affected by heat-stress at reproductive stage due to changes in global climatic conditions and cropping systems. Identifying quantitative trait loci (QTLs) for heat tolerance may facilitate breeding for heat tolerant varieties. The present study was aimed at identifying QTLs associated with heat tolerance in chickpea using 292 F8-9 recombinant inbred lines (RILs) developed from the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant). Phenotyping of RILs was undertaken for two heat-stress (late sown) and one non-stress (normal sown) environments. A genetic map spanning 529.11 cM and comprising 271 genotyping by sequencing (GBS) based single nucleotide polymorphism (SNP) markers was constructed. Composite interval mapping (CIM) analysis revealed two consistent genomic regions harbouring four QTLs each on CaLG05 and CaLG06. Four major QTLs for number of filled pods per plot (FPod), total number of seeds per plot (TS), grain yield per plot (GY) and % pod setting (%PodSet), located in the CaLG05 genomic region, were found to have cumulative phenotypic variation of above 50%. Nineteen pairs of epistatic QTLs showed significant epistatic effect, and non-significant QTL × environment interaction effect, except for harvest index (HI) and biomass (BM). A total of 25 putative candidate genes for heat-stress were identified in the two major genomic regions. This is the first report on QTLs for heat-stress response in chickpea. The markers linked to the above mentioned four major QTLs can facilitate marker-assisted breeding for heat tolerance in chickpea.


Asunto(s)
Mapeo Cromosómico , Cicer/genética , Productos Agrícolas/genética , Sitios de Carácter Cuantitativo/genética , Termotolerancia/genética , Cicer/fisiología , Productos Agrícolas/fisiología , Marcadores Genéticos , Genoma de Planta/genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Semillas/genética , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
15.
Adv Biochem Eng Biotechnol ; 164: 277-292, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29372271

RESUMEN

Agricultural disciplines are becoming data intensive and the agricultural research data generation technologies are becoming sophisticated and high throughput. On the one hand, high-throughput genotyping is generating petabytes of data; on the other hand, high-throughput phenotyping platforms are also generating data of similar magnitude. Under modern integrated crop breeding, scientists are working together by integrating genomic and phenomic data sets of huge data volumes on a routine basis. To manage such huge research data sets and use them appropriately in decision making, Data Management Analysis & Decision Support Tools (DMASTs) are a prerequisite. DMASTs are required for a range of operations including generating the correct breeding experiments, maintaining pedigrees, managing phenotypic data, storing and retrieving high-throughput genotypic data, performing analytics, including trial analysis, spatial adjustments, identifications of MTAs, predicting Genomic Breeding Values (GEBVs), and various selection indices. DMASTs are also a prerequisite for understanding trait dynamics, gene action, interactions, biology, GxE, and various other factors contributing to crop improvement programs by integrating data generated from various science streams. These tools have simplified scientists' lives and empowered them in terms of data storage, data retrieval, data analytics, data visualization, and sharing with other researchers and collaborators. This chapter focuses on availability, uses, and gaps in present-day DMASTs. Graphical Abstract.


Asunto(s)
Agricultura/métodos , Productos Agrícolas , Análisis de Datos , Toma de Decisiones Asistida por Computador , Genómica , Agricultura/tendencias , Productos Agrícolas/genética , Genómica/tendencias , Fenotipo , Fitomejoramiento
16.
Sci Rep ; 7(1): 17384, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234080

RESUMEN

There is growing interest in the conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Legumes play an important role in human health, sustainable food production, global food security, and the resilience of current agricultural systems. Pea belongs to the ancient set of cultivated plants of the Near East domestication center and remains an important crop today. Based on genome-wide analysis, P. fulvum was identified as a well-supported species, while the diversity of wild P. sativum subsp. elatius was structured into 5 partly geographically positioned clusters. We explored the spatial and environmental patterns of two progenitor species of domesticated pea in the Mediterranean Basin and in the Fertile Crescent in relation to the past and current climate. This study revealed that isolation by distance does not explain the genetic structure of P. sativum subsp. elatius in its westward expansion from its center of origin. The genetic diversity of wild pea may be driven by Miocene-Pliocene events, while the phylogenetic diversity centers may reflect Pleisto-Holocene climatic changes. These findings help set research and discussion priorities and provide geographical and ecological information for germplasm-collecting missions, as well as for the preservation of extant diversity in ex-situ collections.


Asunto(s)
Domesticación , Variación Genética , Filogeografía , Pisum sativum/genética , Genómica , Medio Oriente , Filogenia
17.
Front Plant Sci ; 8: 712, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529518

RESUMEN

The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg-1 and Zinc = 10.2 to 58.7 mg kg-1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01) indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc.

18.
Sci Rep ; 7(1): 1813, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500330

RESUMEN

Sterility mosaic disease (SMD) is one of the serious production constraints that may lead to complete yield loss in pigeonpea. Three mapping populations including two recombinant inbred lines and one F2, were used for phenotyping for SMD resistance at two locations in three different years. Genotyping-by-sequencing approach was used for simultaneous identification and genotyping of SNPs on above mentioned populations. In total, 212,464, 89,699 and 64,798 SNPs were identified in ICPL 20096 × ICPL 332 (PRIL_B), ICPL 20097 × ICP 8863 (PRIL_C) and ICP 8863 × ICPL 87119 (F2) respectively. By using high-quality SNPs, genetic maps were developed for PRIL_B (1,101 SNPs; 921.21 cM), PRIL_C (484 SNPs; 798.25 cM) and F2 (996 SNPs; 1,597.30 cM) populations. The average inter marker distance on these maps varied from 0.84 cM to 1.65 cM, which was lowest in all genetic mapping studies in pigeonpea. Composite interval mapping based QTL analysis identified a total of 10 QTLs including three major QTLs across the three populations. The phenotypic variance of the identified QTLs ranged from 3.6 to 34.3%. One candidate genomic region identified on CcLG11 seems to be promising QTL for molecular breeding in developing superior lines with enhanced resistance to SMD.


Asunto(s)
Cajanus/clasificación , Cajanus/genética , Resistencia a la Enfermedad/genética , Genoma de Planta , Genómica , Infertilidad/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Genómica/métodos , Tipificación Molecular , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
Sci Rep ; 7(1): 1911, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507291

RESUMEN

Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F2, respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining >10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs (qFW11.1, qFW11.2 and qFW11.3) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.


Asunto(s)
Cajanus/microbiología , Mapeo Cromosómico , Fusarium/genética , Tipificación Molecular , Sitios de Carácter Cuantitativo , Cruzamiento , Genética de Población , Genoma Fúngico , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Polimorfismo de Nucleótido Simple
20.
Front Plant Sci ; 7: 1666, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27920780

RESUMEN

Genomic selection (GS) unlike marker-assisted backcrossing (MABC) predicts breeding values of lines using genome-wide marker profiling and allows selection of lines prior to field-phenotyping, thereby shortening the breeding cycle. A collection of 320 elite breeding lines was selected and phenotyped extensively for yield and yield related traits at two different locations (Delhi and Patancheru, India) during the crop seasons 2011-12 and 2012-13 under rainfed and irrigated conditions. In parallel, these lines were also genotyped using DArTseq platform to generate genotyping data for 3000 polymorphic markers. Phenotyping and genotyping data were used with six statistical GS models to estimate the prediction accuracies. GS models were tested for four yield related traits viz. seed yield, 100 seed weight, days to 50% flowering and days to maturity. Prediction accuracy for the models tested varied from 0.138 (seed yield) to 0.912 (100 seed weight), whereas performance of models did not show any significant difference for estimating prediction accuracy within traits. Kinship matrix calculated using genotyping data reaffirmed existence of two different groups within selected lines. There was not much effect of population structure on prediction accuracy. In brief, present study establishes the necessary resources for deployment of GS in chickpea breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA