Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
NPJ Vaccines ; 9(1): 24, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321067

RESUMEN

Development of safe, highly effective and affordable enteric fever vaccines is a global health priority. Live, oral typhoid vaccines induce strong mucosal immunity and long-term protection, but safety remains a concern. In contrast, efficacy wears off rapidly for injectable, polysaccharide-based vaccines, which elicit poor mucosal response. We previously reported Salmonella Typhi outer membrane protein, T2544 as a potential candidate for bivalent (S. Typhi and S. Paratyphi A) vaccine development. Here, we show that intranasal immunization with a subunit vaccine (chimera of T2544 and cholera toxin B subunit) induced strong systemic and intestinal mucosal immunity and protection from S. Typhi challenge in a mouse model. CTB-T2544 augmented gut-homing receptor expression on lymphocytes that produced Th1 and Th17 cytokines, secretory IgA in stool that inhibited bacterial motility and epithelial attachment, antibody recall response and affinity maturation with increased number of follicular helper T cells and CD4+ central and effector memory cells.

2.
Indian J Med Res ; 159(1): 78-90, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345040

RESUMEN

BACKGROUND OBJECTIVES: Discovery of new antibiotics is the need of the hour to treat infectious diseases. An ever-increasing repertoire of multidrug-resistant pathogens poses an imminent threat to human lives across the globe. However, the low success rate of the existing approaches and technologies for antibiotic discovery remains a major bottleneck. In silico methods like machine learning (ML) deem more promising to meet the above challenges compared with the conventional experimental approaches. The goal of this study was to create ML models that may be used to successfully predict new antimicrobial compounds. METHODS: In this article, we employed eight different ML algorithms namely, extreme gradient boosting, random forest, gradient boosting classifier, deep neural network, support vector machine, multilayer perceptron, decision tree, and logistic regression. These models were trained using a dataset comprising 312 antibiotic drugs and a negative set of 936 non-antibiotic drugs in a five-fold cross validation approach. RESULTS: The top four ML classifiers (extreme gradient boosting, random forest, gradient boosting classifier and deep neural network) were able to achieve an accuracy of 80 per cent and above during the evaluation of testing and blind datasets. INTERPRETATION CONCLUSIONS: We aggregated the top performing four models through a soft-voting technique to develop an ensemble-based ML method and incorporated it into a freely accessible online prediction server named ABDpred ( http://clinicalmedicinessd.com.in/abdpred/ ).


Asunto(s)
Algoritmos , Antiinfecciosos , Humanos , Aprendizaje Automático , Aprendizaje Automático Supervisado , Antibacterianos/uso terapéutico
3.
J Asthma ; : 1-13, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214461

RESUMEN

OBJECTIVE: This study aimed to comprehensively investigate the prevalence of ABPA and AFRS, scrutinize existing diagnostic criteria and immunoassays, pinpoint their limitations, highlight ABPA as an occupational health implication, and identify suggestive measures to improve ABPA diagnosis in the context of Occupational Health Nursing and primary healthcare. DATA SOURCES: The data sources such as PubMed, Health and Safety Science Abstracts, OSH Update, Medline, and Google Scholar were searched. STUDY SELECTIONS: All published studies in the English language from 1990 till Oct, 2023 using Mesh terms keywords "Allergic bronchopulmonary aspergillosis," "Allergic fungal rhinosinusitis," "Signs and Symptoms," "Rapid Diagnostic Tests," "Diagnosis," "Occupational Health," "Occupational Health Nursing," "Prevalence," "Allergens" following "Boolean operators" search strategy were selected. RESULTS: This review succinctly covered signs, symptoms, and prevalence data concerning ABPA and AFRS. It briefly discussed existing diagnostic criteria and immunoassays, highlighted factors influencing the assay's variability, and underscored the role and scope of specific allergens toward improved, simple, and early ABPA diagnosis. ABPA as a neglected occupational health concern was emphasized, and the importance of RDTs in the context of healthcare professionals and OHNs was stated. Finally, this study suggested analyzing the impact of compromised post-pandemic immune status and the use of immunosuppressive drugs on ABPA prevalence among vulnerable communities and occupations. CONCLUSION: To conclude, global and Indian ABPA and AFRS prevalence data, factors influencing existing assay variability, and the scope of improvement in RDTs for ABPA diagnosis in the background of primary healthcare professionals and OHNs were addressed.

4.
PLoS Negl Trop Dis ; 17(10): e0011652, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37824592

RESUMEN

INTRODUCTION: Screening for G6PD deficiency can inform disease management including malaria. Treatment with the antimalarial drugs primaquine and tafenoquine can be guided by point-of-care testing for G6PD deficiency. METHODS AND FINDINGS: Data from similar clinical studies evaluating the performance of the STANDARD G6PD Test (SD Biosensor, South Korea) conducted in Bangladesh, Brazil, Ethiopia, India, Thailand, the United Kingdom, and the United States were pooled. Test performance was assessed in a retrospective analysis on capillary and venous specimens. All study sites used spectrophotometry for reference G6PD testing, and either the HemoCue or complete blood count for reference hemoglobin measurement. The sensitivity of the STANDARD G6PD Test using the manufacturer thresholds for G6PD deficient and intermediate cases in capillary specimens from 4212 study participants was 100% (95% Confidence Interval (CI): 97.5%-100%) for G6PD deficient cases with <30% activity and 77% (95% CI 66.8%-85.4%) for females with intermediate activity between 30%-70%. Specificity was 98.1% (95% CI 97.6%-98.5%) and 92.8% (95% CI 91.6%-93.9%) for G6PD deficient individuals and intermediate females, respectively. Out of 20 G6PD intermediate females with false normal results, 12 had activity levels >60% on the reference assay. The negative predictive value for females with G6PD activity >60% was 99.6% (95% CI 99.1%-99.8%) on capillary specimens. Sensitivity among 396 P. vivax malaria cases was 100% (69.2%-100.0%) for both deficient and intermediate cases. Across the full dataset, 37% of those classified as G6PD deficient or intermediate resulted from true normal cases. Despite this, over 95% of cases would receive correct treatment with primaquine, over 87% of cases would receive correct treatment with tafenoquine, and no true G6PD deficient cases would be treated inappropriately based on the result of the STANDARD G6PD Test. CONCLUSIONS: The STANDARD G6PD Test enables safe access to drugs which are contraindicated for individuals with G6PD deficiency. Operational considerations will inform test uptake in specific settings.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Malaria Vivax , Femenino , Humanos , Primaquina/uso terapéutico , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Estudios Retrospectivos , Antimaláricos/uso terapéutico , Malaria Vivax/diagnóstico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control
5.
Mol Biol Rep ; 50(2): 1033-1044, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36383337

RESUMEN

BACKGROUND: Inorganic arsenic [As(III)] and hexavalent chromium [Cr(VI)] can potentially affect metabolic functions. These heavy metal(s)/metalloids can also affect the gut microbial architecture which affects metabolic health. Here, we assessed the effects of short-term exposure of As(III) and Cr(VI) on key transcription factors in adipose tissues and on selected gut microbial abundances to understand the possible modulatory role of these toxicants on host metabolic health. METHODS AND RESULTS: qRT-PCR based relative bacterial abundance studies in cecal samples, gene expression analysis for gut wall integrity in ileum and colon and adipogenesis, lipolysis, and thermogenic genes in gonadal white and brown adipose tissue (gWAT and BAT), along with tissue oxidative stress parameters have been performed. As(III) and Cr(VI) exposure reduced beneficial Lactobacilli, Bifidobacteria, Akkermansia, Lachenospiraceae, Fecalibacterium, Eubacterium, and clostridium coccoid group while increasing lipopolysaccharides producing Enterobacteriaceae abundances. It also impaired structural features and expression of key tight junction and mucin production genes in ileum and colon (Cld-2, Cld-4, ZO-1, ZO-2, MUC-2 and - 4). In gWAT it inhibited adipogenesis (PPARγ, FASN, SREBP1a), lipolysis (HSL, ACOX-1), and thermogenesis (UCP-1, PGC1a, PRDM-16, PPARa) related genes expression, whereas in BAT, it enhanced adipogenesis and reduced thermogenesis. These exposures also reduces the endogenous antioxidants levels in these tissues and promote pro-inflammatory cytokines genes expression (TLRs, IL-6, MCP-1). The combinatorial exposure appears to have more deleterious effects. CONCLUSION: These effects of As(III) and Cr(VI) may not directly be linked to their known toxicological effects, instead, more intriguing crosstalk with gut microbial ecosystem hold the key.


Asunto(s)
Arsénico , Ratones , Animales , Arsénico/metabolismo , Ecosistema , Disbiosis/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Tejido Adiposo Blanco/metabolismo , Termogénesis
6.
J Biochem Mol Toxicol ; 37(4): e23292, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36527247

RESUMEN

Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.


Asunto(s)
Disruptores Endocrinos , Masculino , Humanos , Disruptores Endocrinos/toxicidad , Semen , Genitales Masculinos , Testículo , Compuestos de Bencidrilo/toxicidad
7.
Front Immunol ; 14: 1304170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264668

RESUMEN

Human Salmonella infections pose significant public health challenges globally, primarily due to low diagnostic yield of systemic infections, emerging and expanding antibiotic resistance of both the typhoidal and non-typhoidal Salmonella strains and the development of asymptomatic carrier state that functions as a reservoir of infection in the community. The limited long-term efficacy of the currently licensed typhoid vaccines, especially in smaller children and non-availability of vaccines against other Salmonella serovars necessitate active research towards developing a multivalent vaccine with wider coverage of protection against pathogenic Salmonella serovars. We had earlier reported immunogenicity and protective efficacy of a subunit vaccine containing a recombinant outer membrane protein (T2544) of Salmonella Typhi in a mouse model. This was achieved through the robust induction of serum IgG, mucosal secretory IgA and Salmonella-specific cytotoxic T cells as well as memory B and T cell response. Here, we report the development of a glycoconjugate vaccine, containing high molecular weight complexes of Salmonella Typhimurium O-specific polysaccharide (OSP) and recombinant T2544 that conferred simultaneous protection against S. Typhi, S. Paratyphi, S. Typhimurium and cross-protection against S. enteritidis in mice. Our findings corroborate with the published studies that suggested the potential of Salmonella OSP as a vaccine antigen. The role of serum antibodies in vaccine-mediated protection is suggested by rapid seroconversion with high titers of serum IgG and IgA, persistently elevated titers after primary immunization along with a strong antibody recall response with higher avidity serum IgG against both OSP and T2544 and significantly raised SBA titers of both primary and secondary antibodies against different Salmonella serovars. Elevated intestinal secretory IgA and bacterial motility inhibition by the secretory antibodies supported their role as well in vaccine-induced protection. Finally, robust induction of T effector memory response indicates long term efficacy of the candidate vaccine. The above findings coupled with protection of vaccinated animals against multiple clinical isolates confirm the suitability of OSP-rT2544 as a broad-spectrum candidate subunit vaccine against human infection due to typhoidal and non-typhoidal Salmonella serovars.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Niño , Humanos , Animales , Ratones , Células T de Memoria , Secreciones Intestinales , Serogrupo , Salmonella enteritidis , Vacunas de Subunidad , Inmunoglobulina A Secretora , Inmunoglobulina G
8.
Infect Immun ; 90(6): e0011922, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35587200

RESUMEN

Antibiotic resistance of pathogenic bacteria has emerged as a major threat to public health worldwide. While stable resistance due to the acquisition of genomic mutations or plasmids carrying antibiotic resistance genes is well established, much less is known about the temporary and reversible resistance induced by antibiotic treatment, such as that due to treatment with bacterial cell wall-inhibiting antibiotics such as ampicillin. Typically, ampicillin concentration in the blood and other tissues gradually increases over time after initiation of the treatment. As a result, the bacterial population is exposed to a concentration gradient of ampicillin during the treatment of infectious diseases. This is different from in vitro drug testing, where the organism is exposed to fixed drug concentrations from the beginning until the end. To mimic the mode of antibiotic exposure of microorganisms within host tissues, we cultured the wild-type, ampicillin-sensitive Salmonella enterica serovar Typhi Ty2 strain (S. Typhi Ty2) in the presence of increasing concentrations of ampicillin over a period of 14 days. This resulted in the development of a strain that displayed several features of the so-called L-form of bacteria, including the absence of the cell wall, altered shape, and lower growth rate compared with the parental form. Studies of the pathogenesis of S. Typhi L-form showed efficient infection of the murine and human macrophage cell lines. More importantly, S. Typhi L-form was also able to establish infection in a mouse model to the extent comparable to its parental form. These results suggested that L-form generation following the initiation of treatment with antibiotics could lead to drug escape of S. Typhi and cell to cell (macrophages) spread of the bacteria, which sustain the infection. Oral infection by the L-form bacteria underscores the potential of rapid disease transmission through the fecal-oral route, highlighting the need for new approaches to decrease the reservoir of infection.


Asunto(s)
Ampicilina , Salmonella typhi , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Línea Celular , Macrófagos/microbiología , Ratones , Salmonella typhi/genética
9.
Methods ; 203: 108-115, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35364279

RESUMEN

The ongoing global pandemic of COVID-19, caused by SARS-CoV-2 has killed more than 5.9 million individuals out of ∼43 million confirmed infections. At present, several parts of the world are encountering the 3rd wave. Mass vaccination has been started in several countries but they are less likely to be broadly available for the current pandemic, repurposing of the existing drugs has drawn highest attention for an immediate solution. A recent publication has mapped the physical interactions of SARS-CoV-2 and human proteins by affinity-purification mass spectrometry (AP-MS) and identified 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Here, we taken a network biology approach and constructed a human protein-protein interaction network (PPIN) with the above SARS-CoV-2 targeted proteins. We utilized a combination of essential network centrality measures and functional properties of the human proteins to identify the critical human targets of SARS-CoV-2. Four human proteins, namely PRKACA, RHOA, CDK5RAP2, and CEP250 have emerged as the best therapeutic targets, of which PRKACA and CEP250 were also found by another group as potential candidates for drug targets in COVID-19. We further found candidate drugs/compounds, such as guanosine triphosphate, remdesivir, adenosine monophosphate, MgATP, and H-89 dihydrochloride that bind the target human proteins. The urgency to prevent the spread of infection and the death of diseased individuals has prompted the search for agents from the pool of approved drugs to repurpose them for COVID-19. Our results indicate that host targeting therapy with the repurposed drugs may be a useful strategy for the treatment of SARS-CoV-2 infection.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Autoantígenos , Proteínas de Ciclo Celular , Reposicionamiento de Medicamentos , Humanos , Proteínas del Tejido Nervioso , Pandemias , SARS-CoV-2
10.
Malar J ; 20(1): 307, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238299

RESUMEN

BACKGROUND: Point-of-care glucose-6-phosphate dehydrogenase (G6PD) testing has the potential to make the use of radical treatment for vivax malaria safer and more effective. Widespread use of G6PD tests as part of malaria case management has been limited, in part due to due concerns regarding product usability, user training, and supervision. This study seeks to assess how well end users can understand the Standard™ G6PD Test (SD Biosensor, Suwon, South Korea) workflow, result output, and label after training. This will ultimately help inform test registration and introduction. METHODS: Potential G6PD test users who provide malaria case management at three sites in Brazil, Ethiopia, and India were trained on the use of the SD Biosensor Standard G6PD Test and assessed based on their ability to understand the test workflow and interpret results. The assessment was done through a questionnaire, designed to assess product usability against key technical product specifications and fulfill regulatory evidence requirements. Any participant who obtained 85% or above correct responses to the questionnaire was considered to adequately comprehend how to use and interpret the test. RESULTS: Forty-five participants, including malaria microscopists, laboratory staff, nurses, and community health workers took part in the study. Seventy-eight percent of all participants in the study (35/45) obtained passing scores on the assessment with minimal training. Responses to the multiple-choice questions indicate that most participants understood well the test intended use, safety claims, and warnings. The greatest source of error regarding the test was around the correct operating temperature. Most test results were also read and interpreted correctly, with the haemoglobin measurement being a more problematic output to interpret than the G6PD measurement. CONCLUSIONS: These data results show how a standardized tool can be used to assess a user's ability to run a point-of-care diagnostic and interpret results. When applied to the SD Biosensor Standard G6PD Test, this tool demonstrates that a range of users across multiple contexts can use the test and suggests improvements to the test instructions and training that can improve product usability, increase user comprehension, and ultimately contribute to more widespread effective use of point-of-care G6PD tests. TRIAL REGISTRATION: NCT04033640.


Asunto(s)
Competencia Clínica , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Glucosafosfato Deshidrogenasa/sangre , Capacitación en Servicio , Malaria/diagnóstico , Pruebas en el Punto de Atención , Brasil , Etiopía , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Humanos , India , Malaria/sangre , Malaria/tratamiento farmacológico , Etiquetado de Productos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...